Multi-Purpose-MPC/spatial_bicycle_models.py

800 lines
32 KiB
Python
Raw Normal View History

import numpy as np
from abc import ABC, abstractmethod
#########################
# Temporal State Vector #
#########################
class TemporalState:
def __init__(self, x, y, psi, v_x, v_y):
"""
Temporal State Vector containing car pose (x, y, psi) and velocity
:param x: x position in global coordinate system | [m]
:param y: y position in global coordinate system | [m]
:param psi: yaw angle | [rad]
:param v_x: velocity in x direction (car frame) | [m/s]
:param v_y: velocity in y direction (car frame) | [m/s]
"""
self.x = x
self.y = y
self.psi = psi
self.v_x = v_x
self.v_y = v_y
########################
# Spatial State Vector #
########################
class SpatialState(ABC):
"""
Spatial State Vector - Abstract Base Class.
"""
@abstractmethod
def __init__(self):
pass
def __getitem__(self, item):
return list(vars(self).values())[item]
def __len__(self):
return len(vars(self))
def __iadd__(self, other):
"""
Overload Sum-Add operator.
:param other: numpy array to be added to state vector
"""
for state_id, state in enumerate(vars(self).values()):
vars(self)[list(vars(self).keys())[state_id]] += other[state_id]
return self
def list_states(self):
"""
Return list of names of all states.
"""
return list(vars(self).keys())
class SimpleSpatialState(SpatialState):
def __init__(self, e_y, e_psi, v):
"""
Simplified Spatial State Vector containing orthogonal deviation from
reference path (e_y), difference in orientation (e_psi) and velocity
:param e_y: orthogonal deviation from center-line | [m]
:param e_psi: yaw angle relative to path | [rad]
:param v: absolute velocity | [m/s]
"""
super(SimpleSpatialState, self).__init__()
self.e_y = e_y
self.e_psi = e_psi
self.v = v
class ExtendedSpatialState(SpatialState):
def __init__(self, e_y, e_psi, v_x, v_y, omega, t):
"""
Extended Spatial State Vector containing separate velocities in x and
y direction, angular velocity and time
:param e_y: orthogonal deviation from center-line | [m]
:param e_psi: yaw angle relative to path | [rad]
:param v_x: velocity in x direction (car frame) | [m/s]
:param v_y: velocity in y direction (car frame) | [m/s]
:param omega: anglular velocity of the car | [rad/s]
:param t: simulation time| [s]
"""
super(ExtendedSpatialState, self).__init__()
self.e_y = e_y
self.e_psi = e_psi
self.v_x = v_x
self.v_y = v_y
self.omega = omega
self.t = t
####################################
# Spatial Bicycle Model Base Class #
####################################
class SpatialBicycleModel(ABC):
def __init__(self, reference_path):
"""
Abstract Base Class for Spatial Reformulation of Bicycle Model.
:param reference_path: reference path object to follow
"""
# Precision
self.eps = 1e-12
# Reference Path
self.reference_path = reference_path
# Set initial distance traveled
self.s = 0.0
# Set initial waypoint ID
self.wp_id = 0
# Set initial waypoint
self.current_waypoint = self.reference_path.waypoints[self.wp_id]
# Declare spatial state variable | Initialization in sub-class
self.spatial_state = None
# Declare temporal state variable | Initialization in sub-class
self.temporal_state = None
# Declare system matrices of linearized model | Used for MPC
self.A, self.B = None, None
def s2t(self, reference_waypoint=None, reference_state=None):
"""
Convert spatial state to temporal state. Either convert self.spatial_
state with current waypoint as reference or provide reference waypoint
and reference_state.
:return x, y, psi
"""
# Compute spatial state for current waypoint if no waypoint given
if reference_waypoint is None and reference_state is None:
# compute temporal state variables
x = self.current_waypoint.x - self.spatial_state.e_y * np.sin(
self.current_waypoint.psi)
y = self.current_waypoint.y + self.spatial_state.e_y * np.cos(
self.current_waypoint.psi)
psi = self.current_waypoint.psi + self.spatial_state.e_psi
else:
# compute temporal state variables
x = reference_waypoint.x - reference_state[0] * np.sin(
reference_waypoint.psi)
y = reference_waypoint.y + reference_state[0] * np.cos(
reference_waypoint.psi)
psi = reference_waypoint.psi + reference_state[1]
return x, y, psi
def drive(self, D, delta):
"""
Update states of spatial bicycle model. Model drive to the next
waypoint on the reference path.
:param D: acceleration command | [-1, 1]
:param delta: angular velocity | [rad]
"""
# Get spatial derivatives
spatial_derivatives = self.get_spatial_derivatives(D, delta)
# Get delta_s | distance to next waypoint
next_waypoint = self.reference_path.waypoints[self.wp_id+1]
delta_s = next_waypoint - self.current_waypoint
# Update spatial state (Forward Euler Approximation)
self.spatial_state += spatial_derivatives * delta_s
# Assert that unique projections of car pose onto path exists
assert self.spatial_state.e_y < (1 / (self.current_waypoint.kappa +
self.eps))
# Increase waypoint ID
self.wp_id += 1
# Update current waypoint
self.current_waypoint = self.reference_path.waypoints[self.wp_id]
# Update temporal_state to match spatial state
self.temporal_state = self.s2t()
# Update s | total driven distance along path
self.s += delta_s
# Linearize model around new operating point
self.A, self.B = self.linearize()
@abstractmethod
def get_spatial_derivatives(self, D, delta):
pass
@abstractmethod
def linearize(self):
pass
########################
# Simple Bicycle Model #
########################
class SimpleBicycleModel(SpatialBicycleModel):
def __init__(self, reference_path, e_y, e_psi, v):
"""
Simplified Spatial Bicycle Model. Spatial Reformulation of Kinematic
Bicycle Model. Uses Simplified Spatial State.
:param reference_path: reference path model is supposed to follow
:param e_y: deviation from reference path | [m]
:param e_psi: heading offset from reference path | [rad]
:param v: initial velocity | [m/s]
"""
# Initialize base class
super(SimpleBicycleModel, self).__init__(reference_path)
# Constants
self.C1 = 0.5
self.C2 = 17.06
self.Cm1 = 12.0
self.Cm2 = 2.17
self.Cr2 = 0.1
self.Cr0 = 0.6
# Initialize spatial state
self.spatial_state = SimpleSpatialState(e_y, e_psi, v)
# Initialize temporal state
self.temporal_state = self.s2t()
# Compute linear system matrices | Used for MPC
self.A, self.B = self.linearize()
def s2t(self, reference_waypoint=None, reference_state=None):
"""
Convert spatial state to temporal state. Either convert self.spatial_
state with current waypoint as reference or provide reference waypoint
and reference_state.
:return temporal state equivalent to self.spatial_state or provided
reference state
"""
if reference_state is None and reference_waypoint is None:
# Get pose information from base class implementation
x, y, psi = super(SimpleBicycleModel, self).s2t()
# Compute simplified velocities
v_x = self.spatial_state.v
v_y = 0
else:
# Get pose information from base class implementation
x, y, psi = super(SimpleBicycleModel, self).s2t(reference_waypoint,
reference_state)
v_x = reference_state[2]
v_y = 0
return TemporalState(x, y, psi, v_x, v_y)
def get_temporal_derivatives(self, D, delta):
"""
Compute relevant temporal derivatives needed for state update.
:param D: duty-cycle of DC motor | [-1, 1]
:param delta: steering command | [rad]
:return: temporal derivatives of distance, angle and velocity
"""
# Compute velocity components | Approximation for small delta
v_x = self.spatial_state.v
v_y = self.spatial_state.v * delta * self.C1
# Compute velocity along waypoint direction
v_sigma = v_x * np.cos(self.spatial_state.e_psi) - v_y * np.sin(
self.spatial_state.e_psi)
# Compute velocity along path
s_dot = 1 / (1 - (self.spatial_state.e_y * self.current_waypoint.kappa)) * v_sigma
# Compute yaw angle rate of change
psi_dot = self.spatial_state.v * delta * self.C2
# Compute acceleration
v_dot = (self.Cm1 - self.Cm2 * self.spatial_state.v) * D - self.Cr2 * (
self.spatial_state.v ** 2) - self.Cr0 - (
self.spatial_state.v * delta) ** 2 * self.C2 * self.C1 ** 2
return s_dot, psi_dot, v_dot
def get_spatial_derivatives(self, D, delta):
"""
Compute spatial derivatives of all state variables for update.
:param D: duty-cycle of DC motor | [-1, 1]
:param delta: steering angle | [rad]
:return: numpy array with spatial derivatives for all state variables
"""
# Compute temporal derivatives
s_dot, psi_dot, v_dot = self.get_temporal_derivatives(D, delta)
# Compute spatial derivatives
d_e_y_d_s = (self.spatial_state.v * np.sin(self.spatial_state.e_psi)
+ self.spatial_state.v * delta * self.C1 * np.cos(
self.spatial_state.e_psi)) / s_dot
d_e_psi_d_s = psi_dot / s_dot - self.current_waypoint.kappa
d_v_d_s = v_dot / s_dot
return np.array([d_e_y_d_s, d_e_psi_d_s, d_v_d_s])
def linearize(self, D=0, delta=0):
"""
Linearize the system equations around the current state and waypoint.
:param delta: reference steering angle | [rad]
:param D: reference duty-cycle of DC-motor | [-1, 1]
"""
# Get current state | operating point to linearize around
e_y = self.spatial_state.e_y
e_psi = self.spatial_state.e_psi
v = self.spatial_state.v
# Get curvature of current waypoint
kappa = self.reference_path.waypoints[self.wp_id].kappa
# Get delta_s
next_waypoint = self.reference_path.waypoints[self.wp_id+1]
delta_s = next_waypoint - self.current_waypoint
##############################
# Helper Partial Derivatives #
##############################
# Compute velocity components
v_x = v
v_y = v * delta * self.C1
# Compute partial derivatives of s_dot w.r.t. each state variable,
# input variable and kappa
s_dot = 1 / (1 - e_y*kappa) * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi))
d_s_dot_d_e_y = kappa / (1-e_y*kappa)**2 * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi))
d_s_dot_d_e_psi = 1 / (1 - e_y*kappa) * (-v_x * np.sin(e_psi) - v_y * np.cos(e_psi))
d_s_dot_d_v = 1 / (1 - e_y*kappa) * (np.cos(e_psi) - delta * self.C1 * np.sin(e_psi))
# d_s_dot_d_D = 0
d_s_dot_d_delta = 1 / (1 - e_y*kappa) * (- v * self.C1 * np.sin(e_psi))
d_s_dot_d_kappa = e_y / (1-e_y*kappa)**2 * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi))
# Compute partial derivatives of v_psi w.r.t. each state variable,
# input variable and kappa
v_psi = (v_x * np.sin(e_psi) + v_y * np.cos(e_psi))
# d_v_psi_d_e_y = 0
d_v_psi_d_e_psi = v_x * np.cos(e_psi) - v_y * np.sin(e_psi)
d_v_psi_d_v = np.sin(e_psi) + self.C1 * delta * np.cos(e_psi)
# d_v_psi_d_D = 0
d_v_psi_d_delta = self.C1 * v * np.cos(e_psi)
# d_v_psi_d_kappa = 0
# Compute partial derivatives of psi_dot w.r.t. each state variable,
# input variable and kappa
psi_dot = v * delta * self.C2
# d_psi_dot_d_e_y = 0
# d_psi_dot_d_e_psi = 0
d_psi_dot_d_v = delta * self.C2
# d_psi_dot_d_D = 0
d_psi_dot_d_delta = v * self.C2
# d_psi_dot_d_kappa = 0
# Compute partial derivatives of v_dot w.r.t. each state variable,
# input variable and kappa
v_dot = (self.Cm1 - self.Cm2 * v) * D - self.Cr2 * (v ** 2) - self.Cr0 \
- (v * delta) ** 2 * self.C2 * (self.C1 ** 2)
# d_v_dot_d_e_y = 0
# d_v_dot_d_e_psi = 0
d_v_dot_d_v = -self.Cm2 * D - 2 * self.Cr2 * v - 2 * v * (delta ** 2) \
* self.C2 * (self.C1 ** 2)
d_v_dot_d_D = self.Cm1 - self.Cm2 * v
d_v_dot_d_delta = -2 * (v ** 2) * delta * self.C2 * self.C1 ** 2
# d_v_dot_d_kappa = 0
#############################
# State Partial Derivatives #
#############################
# Use pre-computed helper derivatives to compute spatial derivatives of
# all state variables using Quotient Rule
# Compute partial derivatives of e_y w.r.t. each state variable,
# input variable and kappa
# e_y = v_psi / s_dot
d_e_y_d_e_y = - d_s_dot_d_e_y * v_psi / (s_dot**2)
d_e_y_d_e_psi = (d_v_psi_d_e_psi * s_dot - d_s_dot_d_e_psi * v_psi) / (s_dot**2)
d_e_y_d_v = (d_v_psi_d_v * s_dot - d_s_dot_d_v * v_psi) / (s_dot**2)
d_e_y_d_D = 0
d_e_y_d_delta = (d_v_psi_d_delta * s_dot - d_s_dot_d_delta * v_psi) / (s_dot**2)
d_e_y_d_kappa = - d_s_dot_d_kappa * v_psi / (s_dot**2)
# Compute partial derivatives of e_psi w.r.t. each state variable,
# input variable and kappa
# e_psi = psi_dot / s_dot - kappa
d_e_psi_d_e_y = - d_s_dot_d_e_y * psi_dot / (s_dot**2)
d_e_psi_d_e_psi = - d_s_dot_d_e_psi * psi_dot / (s_dot**2)
d_e_psi_d_v = (d_psi_dot_d_v * s_dot - d_s_dot_d_v * psi_dot) / (s_dot**2)
d_e_psi_d_D = 0
d_e_psi_d_delta = (d_psi_dot_d_delta * s_dot - d_s_dot_d_delta * psi_dot) / (s_dot**2)
d_e_psi_d_kappa = - d_s_dot_d_kappa * psi_dot / (s_dot**2) - 1
# Compute partial derivatives of v w.r.t. each state variable,
# input variable and kappa
# v = v_dot / s_dot
d_v_d_e_y = - d_s_dot_d_e_y * v_dot / (s_dot**2)
d_v_d_e_psi = - d_s_dot_d_e_psi * v_dot / (s_dot**2)
d_v_d_v = (d_v_dot_d_v * s_dot - d_s_dot_d_v * v_dot) / (s_dot**2)
d_v_d_D = d_v_dot_d_D * s_dot / (s_dot**2)
d_v_d_delta = (d_v_dot_d_delta * s_dot - d_s_dot_d_delta * v_dot) / (s_dot**2)
d_v_d_kappa = - d_s_dot_d_kappa * v_dot / (s_dot**2)
#############
# Jacobians #
#############
# Construct Jacobian Matrix
a_1 = np.array([d_e_y_d_e_y, d_e_y_d_e_psi, d_e_y_d_v, d_e_y_d_kappa])
a_2 = np.array([d_e_psi_d_e_y, d_e_psi_d_e_psi, d_e_psi_d_v, d_e_psi_d_kappa])
a_3 = np.array([d_v_d_e_y, d_v_d_e_psi, d_v_d_v, d_v_d_kappa])
b_1 = np.array([d_e_y_d_D, d_e_y_d_delta])
b_2 = np.array([d_e_psi_d_D, d_e_psi_d_delta])
b_3 = np.array([d_v_d_D, d_v_d_delta])
# Add extra row for kappa | Allows for updating kappa during MPC
# optimization
a_4 = np.array([0, 0, 0, 0])
b_4 = np.array([0, 0])
Ja = np.stack((a_1, a_2, a_3, a_4), axis=0)
Jb = np.stack((b_1, b_2, b_3, b_4), axis=0)
###################
# System Matrices #
###################
# Construct system matrices from Jacobians. Multiply by sampling
# distance delta_s + add identity matrix (Forward Euler Approximation)
A = Ja * delta_s + np.identity(Ja.shape[1])
B = Jb * delta_s
return A, B
##########################
# Extended Bicycle Model #
##########################
class ExtendedBicycleModel(SpatialBicycleModel):
def __init__(self, reference_path, e_y, e_psi, v_x, v_y, omega, t):
"""
Construct spatial bicycle model.
:param e_y: initial deviation from reference path | [m]
:param e_psi: initial heading offset from reference path | [rad]
:param v: initial velocity | [m/s]
:param reference_path: reference path model is supposed to follow
"""
super(ExtendedBicycleModel, self).__init__(reference_path)
# Constants
self.m = 0.041
self.Iz = 27.8e-6
self.lf = 0.029
self.lr = 0.033
self.Cm1 = 0.287
self.Cm2 = 0.0545
self.Cr2 = 0.0518
self.Cr0 = 0.00035
self.Br = 3.3852
self.Cr = 1.2691
self.Dr = 0.1737
self.Bf = 2.579
self.Cf = 1.2
self.Df = 0.192
# Spatial state
self.spatial_state = ExtendedSpatialState(e_y, e_psi, v_x, v_y, omega, t)
# Temporal state
self.temporal_state = self.s2t()
# Linear System Matrices
self.A, self.B = self.linearize()
def s2t(self, reference_waypoint=None, predicted_state=None):
"""
Convert spatial state to temporal state
:return temporal state equivalent to self.spatial_state
"""
# compute velocity information
if predicted_state is None and reference_waypoint is None:
# get information from base class
x, y, psi = super(ExtendedBicycleModel, self).s2t()
v_x = self.spatial_state.v_x
v_y = self.spatial_state.v_y
else:
# get information from base class
x, y, psi = super(ExtendedBicycleModel, self).s2t(reference_waypoint,
predicted_state)
v_x = predicted_state[2]
v_y = predicted_state[3]
return TemporalState(x, y, psi, v_x, v_y)
def get_forces(self, delta, D):
"""
Compute forces required for temporal derivatives of v_x and v_y
:param delta:
:param D:
:return:
"""
F_rx = (self.Cm1 - self.Cm2 * self.spatial_state.v_x) * D - self.Cr0 - self.Cr2 * self.spatial_state.v_x ** 2
alpha_f = - np.arctan2(self.spatial_state.omega*self.lf + self.spatial_state.v_y, self.spatial_state.v_x) + delta
F_fy = self.Df * np.sin(self.Cf*np.arctan(self.Bf*alpha_f))
alpha_r = np.arctan2(self.spatial_state.omega*self.lr - self.spatial_state.v_y, self.spatial_state.v_x)
F_ry = self.Dr * np.sin(self.Cr * np.arctan(self.Br*alpha_r))
return F_rx, F_fy, F_ry, alpha_f, alpha_r
def get_temporal_derivatives(self, delta, F_rx, F_fy, F_ry):
"""
Compute temporal derivatives needed for state update.
:param delta: steering command
:param D: duty-cycle of DC motor
:return: temporal derivatives of distance, angle and velocity
"""
# velocity along path
s_dot = 1 / (1 - (self.spatial_state.e_y * self.current_waypoint.kappa)) \
* (self.spatial_state.v_x * np.cos(self.spatial_state.e_psi)
+ self.spatial_state.v_y * np.sin(self.spatial_state.e_psi))
# velocity in x and y direction
v_x_dot = (F_rx - F_fy * np.sin(delta) + self.m * self.spatial_state.
v_y * self.spatial_state.omega) / self.m
v_y_dot = (F_ry + F_fy * np.cos(delta) - self.m * self.spatial_state.
v_x * self.spatial_state.omega) / self.m
# omega dot
omega_dot = (F_fy * self.lf * np.cos(delta) - F_ry * self.lr) / self.Iz
return s_dot, v_x_dot, v_y_dot, omega_dot
def get_spatial_derivatives(self, delta, D):
"""
Compute spatial derivatives of all state variables for update.
:param delta: steering angle
:param psi_dot: heading rate of change
:param s_dot: velocity along path
:param v_dot: acceleration
:return: spatial derivatives for all state variables
"""
# get required forces
F_rx, F_fy, F_ry, _, _ = self.get_forces(delta, D)
# Compute state derivatives
s_dot, v_x_dot, v_y_dot, omega_dot = \
self.get_temporal_derivatives(delta, F_rx, F_fy, F_ry)
d_e_y = (self.spatial_state.v_x * np.sin(self.spatial_state.e_psi)
+ self.spatial_state.v_y * np.cos(self.spatial_state.e_psi)) \
/ (s_dot + self.eps)
d_e_psi = (self.spatial_state.omega / (s_dot + self.eps) - self.current_waypoint.kappa)
d_v_x = v_x_dot / (s_dot + self.eps)
d_v_y = v_y_dot / (s_dot + self.eps)
d_omega = omega_dot / (s_dot + self.eps)
d_t = 1 / (s_dot + self.eps)
return np.array([d_e_y, d_e_psi, d_v_x, d_v_y, d_omega, d_t])
def linearize(self, delta=0, D=0):
"""
Linearize the system equations around the current state and waypoint.
:param delta: reference steering angle
:param D: reference dutycycle
"""
# get current state
e_y = self.spatial_state.e_y
e_psi = self.spatial_state.e_psi
v_x = self.spatial_state.v_x
v_y = self.spatial_state.v_y
omega = self.spatial_state.omega
t = self.spatial_state.t
# get information about current waypoint
kappa = self.reference_path.waypoints[self.wp_id].kappa
# get delta_s
next_waypoint = self.reference_path.waypoints[self.wp_id + 1]
delta_s = next_waypoint - self.current_waypoint
# get temporal derivatives
F_rx, F_fy, F_ry, alpha_f, alpha_r = self.get_forces(delta, D)
s_dot, v_x_dot, v_y_dot, omega_dot = self.\
get_temporal_derivatives(delta, F_rx, F_fy, F_ry)
##############################
# Forces Partial Derivatives #
##############################
d_alpha_f_d_v_x = 1 / (1 + ((omega * self.lf + v_y) / v_x)**2) * (omega * self.lf + v_y) / (v_x**2)
d_alpha_f_d_v_y = - 1 / (1 + ((omega * self.lf + v_y) / v_x)**2) / v_x
d_alpha_f_d_omega = - 1 / (1 + ((omega * self.lf + v_y) / v_x)**2) * (self.lf / v_x)
d_alpha_f_d_delta = 1
d_alpha_r_d_v_x = - 1 / (1 + ((omega * self.lr - v_y) / v_x)**2) * (omega * self.lr - v_y) / (v_x**2)
d_alpha_r_d_v_y = - 1 / (1 + ((omega * self.lr - v_y) / v_x)**2) / v_x
d_alpha_r_d_omega = 1 / (1 + ((omega * self.lr - v_y) / v_x)**2) * (self.lr * v_x)
d_F_fy_d_v_x = self.Df * np.cos(self.Cf * np.arctan(self.Bf * alpha_f)) * self.Cf / (1 + (self.Bf * alpha_f)**2) * self.Bf * d_alpha_f_d_v_x
d_F_fy_d_v_y = self.Df * np.cos(self.Cf * np.arctan(self.Bf * alpha_f)) * self.Cf / (1 + (self.Bf * alpha_f)**2) * self.Bf * d_alpha_f_d_v_y
d_F_fy_d_omega = self.Df * np.cos(self.Cf * np.arctan(self.Bf * alpha_f)) * self.Cf / (1 + (self.Bf * alpha_f)**2) * self.Bf * d_alpha_f_d_omega
d_F_fy_d_delta = self.Df * np.cos(self.Cf * np.arctan(self.Bf * alpha_f)) * self.Cf / (1 + (self.Bf * alpha_f)**2) * self.Bf * d_alpha_f_d_delta
d_F_ry_d_v_x = self.Dr * np.cos(self.Cr * np.arctan(self.Br * alpha_r)) * self.Cr / (1 + (self.Br * alpha_r)**2) * self.Br * d_alpha_r_d_v_x
d_F_ry_d_v_y = self.Dr * np.cos(self.Cr * np.arctan(self.Br * alpha_r)) * self.Cr / (1 + (self.Br * alpha_r)**2) * self.Br * d_alpha_r_d_v_y
d_F_ry_d_omega = self.Dr * np.cos(self.Cr * np.arctan(self.Br * alpha_r)) * self.Cr / (1 + (self.Br * alpha_r)**2) * self.Br * d_alpha_r_d_omega
d_F_rx_d_v_x = - self.Cm2 * D - 2 * self.Cr2 * v_x
d_F_rx_d_D = self.Cm1 - self.Cm2 * v_x
##############################
# Helper Partial Derivatives #
##############################
d_s_dot_d_e_y = kappa / (1-e_y*kappa)**2 * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi))
d_s_dot_d_e_psi = 1 / (1 - e_y*kappa) * (-v_x * np.sin(e_psi) - v_y * np.cos(e_psi))
d_s_dot_d_v_x = 1 / (1 - e_y*kappa) * np.cos(e_psi)
d_s_dot_d_v_y = -1 / (1 - e_y*kappa) * np.sin(e_psi)
d_s_dot_d_omega = 0
d_s_dot_d_t = 0
d_s_dot_d_delta = 0
d_s_dot_d_D = 0
d_s_dot_d_kappa = e_y / (1-e_y*kappa)**2 * (v_x * np.cos(e_psi) - v_y * np.sin(e_psi))
# Check
c_1 = (v_x * np.sin(e_psi) + v_y * np.cos(e_psi))
d_c_1_d_e_y = 0
d_c_1_d_e_psi = v_x * np.cos(e_psi) - v_y * np.sin(e_psi)
d_c_1_d_v_x = np.sin(e_psi)
d_c_1_d_v_y = np.cos(e_psi)
d_c_1_d_omega = 0
d_c_1_d_t = 0
d_c_1_d_delta = 0
d_c_1_d_D = 0
d_c_1_d_kappa = 0
# Check
d_v_x_dot_d_e_y = 0
d_v_x_dot_d_e_psi = 0
d_v_x_dot_d_v_x = (d_F_rx_d_v_x - d_F_fy_d_v_x * np.sin(delta)) / self.m
d_v_x_dot_d_v_y = - (d_F_fy_d_v_y * np.sin(delta) + self.m * omega) / self.m
d_v_x_dot_d_omega = - (d_F_fy_d_omega * np.sin(delta) + self.m * v_y) / self.m
d_v_x_dot_d_t = 0
d_v_x_dot_d_delta = - (F_fy * np.cos(delta) + d_F_fy_d_delta * np.sin(delta)) / self.m
d_v_x_dot_d_D = d_F_rx_d_D / self.m
d_v_x_dot_d_kappa = 0
d_v_y_dot_d_e_y = 0
d_v_y_dot_d_e_psi = 0
d_v_y_dot_d_v_x = (d_F_ry_d_v_x + d_F_fy_d_v_x * np.cos(delta) - self.m * omega) / self.m
d_v_y_dot_d_v_y = (d_F_ry_d_v_y + d_F_fy_d_v_y * np.cos(delta)) / self.m
d_v_y_dot_d_omega = (d_F_ry_d_omega + d_F_fy_d_omega * np.cos(delta) - self.m * v_x) / self.m
d_v_y_dot_d_t = 0
d_v_y_dot_d_delta = d_F_fy_d_delta * np.cos(delta) / self.m
d_v_y_dot_d_D = 0
d_v_y_dot_d_kappa = 0
d_omega_dot_d_e_y = 0
d_omega_dot_d_e_psi = 0
d_omega_dot_d_v_x = (d_F_fy_d_v_x * self.lf * np.cos(delta) - d_F_ry_d_v_x * self.lr) / self.Iz
d_omega_dot_d_v_y = (d_F_fy_d_v_y * self.lf * np.cos(delta) - d_F_fy_d_v_y * self.lr) / self.Iz
d_omega_dot_d_omega = (d_F_fy_d_omega * self.lf * np.cos(delta) - d_F_fy_d_omega * self.lr) / self.Iz
d_omega_dot_d_t = 0
d_omega_dot_d_delta = (- F_fy * np.sin(delta) + d_F_fy_d_delta * np.cos(delta)) / self.Iz
d_omega_dot_d_D = 0
d_omega_dot_d_kappa = 0
#######################
# Partial Derivatives #
#######################
# derivatives for E_Y
d_e_y_d_e_y = -c_1 * d_s_dot_d_e_y / (s_dot**2)
d_e_y_d_e_psi = (d_c_1_d_e_psi * s_dot - d_s_dot_d_e_psi * c_1) / (s_dot**2)
d_e_y_d_v_x = (d_c_1_d_v_x * s_dot - d_s_dot_d_v_x * c_1) / (s_dot**2)
d_e_y_d_v_y = (d_c_1_d_v_y * s_dot - d_s_dot_d_v_y * c_1) / (s_dot**2)
d_e_y_d_omega = (d_c_1_d_omega * s_dot - d_s_dot_d_omega * c_1) / (s_dot**2)
d_e_y_d_t = 0
d_e_y_d_D = 0
d_e_y_d_delta = (d_c_1_d_delta * s_dot - d_s_dot_d_delta * c_1) / (s_dot**2)
d_e_y_d_kappa = -d_s_dot_d_kappa * c_1 / (s_dot**2)
# derivatives for E_PSI
d_e_psi_d_e_y = - omega * d_s_dot_d_e_y / (s_dot**2)
d_e_psi_d_e_psi = - omega * d_s_dot_d_e_psi / (s_dot**2)
d_e_psi_d_v_x = (- omega * d_s_dot_d_v_x) / (s_dot**2)
d_e_psi_d_v_y = (- omega * d_s_dot_d_v_y) / (s_dot**2)
d_e_psi_d_omega = (s_dot - omega * d_s_dot_d_omega) / (s_dot**2)
d_e_psi_d_t = 0
d_e_psi_d_delta = (- omega * d_s_dot_d_delta) / (s_dot**2)
d_e_psi_d_D = (- omega * d_s_dot_d_D) / (s_dot**2)
d_e_psi_d_kappa = -d_s_dot_d_kappa * omega / (s_dot**2) - 1
# derivatives for V_X
d_v_x_d_e_y = - d_s_dot_d_e_y * v_x_dot / (s_dot**2)
d_v_x_d_e_psi = - d_s_dot_d_e_psi * v_x_dot / (s_dot**2)
d_v_x_d_v_x = (d_v_x_dot_d_v_x * s_dot - d_s_dot_d_v_x * v_x_dot) / (s_dot**2)
d_v_x_d_v_y = (d_v_x_dot_d_v_y * s_dot - d_s_dot_d_v_y * v_x_dot) / (s_dot**2)
d_v_x_d_omega = (d_v_x_dot_d_omega * s_dot - d_s_dot_d_omega * v_x_dot) / (s_dot**2)
d_v_x_d_t = 0
d_v_x_d_delta = (d_v_x_dot_d_delta * s_dot - d_s_dot_d_delta * v_x_dot) / (s_dot**2)
d_v_x_d_D = d_v_x_dot_d_D * s_dot / (s_dot**2)
d_v_x_d_kappa = -d_s_dot_d_kappa * v_x_dot / (s_dot**2)
# derivatives for V_Y
d_v_y_d_e_y = - d_s_dot_d_e_y * v_y_dot / (s_dot ** 2)
d_v_y_d_e_psi = - d_s_dot_d_e_psi * v_y_dot / (s_dot ** 2)
d_v_y_d_v_x = (d_v_y_dot_d_v_x * s_dot - d_s_dot_d_v_x * v_y_dot) / (
s_dot ** 2)
d_v_y_d_v_y = (d_v_y_dot_d_v_y * s_dot - d_s_dot_d_v_y * v_y_dot) / (
s_dot ** 2)
d_v_y_d_omega = (d_v_y_dot_d_omega * s_dot - d_s_dot_d_omega * v_y_dot) / (
s_dot ** 2)
d_v_y_d_t = 0
d_v_y_d_delta = (d_v_y_dot_d_delta * s_dot - d_s_dot_d_delta * v_y_dot) / (
s_dot ** 2)
d_v_y_d_D = d_v_y_dot_d_D * s_dot / (s_dot ** 2)
d_v_y_d_kappa = -d_s_dot_d_kappa * v_y_dot / (s_dot ** 2)
# derivatives for Omega
d_omega_d_e_y = (d_omega_dot_d_e_y * s_dot - omega_dot * d_s_dot_d_e_y) / (s_dot**2)
d_omega_d_e_psi = (d_omega_dot_d_e_psi * s_dot - omega_dot * d_s_dot_d_e_psi) / (s_dot**2)
d_omega_d_v_x = (d_omega_dot_d_v_x * s_dot - omega_dot * d_s_dot_d_v_x) / (s_dot**2)
d_omega_d_v_y = (d_omega_dot_d_v_y * s_dot - omega_dot * d_s_dot_d_v_y) / (s_dot**2)
d_omega_d_omega = (d_omega_dot_d_omega * s_dot - omega_dot * d_s_dot_d_omega) / (s_dot**2)
d_omega_d_t = (d_omega_dot_d_t * s_dot - omega_dot * d_s_dot_d_t) / (s_dot**2)
d_omega_d_delta = (d_omega_dot_d_delta * s_dot - omega_dot * d_s_dot_d_delta) / (s_dot**2)
d_omega_d_D = (d_omega_dot_d_D * s_dot - omega_dot * d_s_dot_d_D) / (s_dot**2)
d_omega_d_kappa = (d_omega_dot_d_kappa * s_dot - omega_dot * d_s_dot_d_kappa) / (s_dot**2)
# derivatives for T
d_t_d_e_y = - d_s_dot_d_e_y / (s_dot**2)
d_t_d_e_psi = - d_s_dot_d_e_psi / (s_dot ** 2)
d_t_d_v_x = - d_s_dot_d_v_x / (s_dot ** 2)
d_t_d_v_y = - d_s_dot_d_v_y / (s_dot ** 2)
d_t_d_omega = - d_s_dot_d_omega / (s_dot ** 2)
d_t_d_t = 0
d_t_d_delta = - d_s_dot_d_delta / (s_dot ** 2)
d_t_d_D = 0
d_t_d_kappa = - d_s_dot_d_kappa / (s_dot ** 2)
a_1 = np.array([d_e_y_d_e_y, d_e_y_d_e_psi, d_e_y_d_v_x, d_e_y_d_v_y, d_e_y_d_omega, d_e_y_d_t, d_e_y_d_kappa])
a_2 = np.array([d_e_psi_d_e_y, d_e_psi_d_e_psi, d_e_psi_d_v_x, d_e_psi_d_v_y, d_e_psi_d_omega, d_e_psi_d_t, d_e_psi_d_kappa])
a_3 = np.array([d_v_x_d_e_y, d_v_x_d_e_psi, d_v_x_d_v_x, d_v_x_d_v_y, d_v_x_d_omega, d_v_x_d_t, d_v_x_d_kappa])
a_4 = np.array([d_v_y_d_e_y, d_v_y_d_e_psi, d_v_y_d_v_x, d_v_y_d_v_y, d_v_y_d_omega, d_v_y_d_t, d_v_y_d_kappa])
a_5 = np.array([d_omega_d_e_y, d_omega_d_e_psi, d_omega_d_v_x, d_omega_d_v_y, d_omega_d_omega, d_omega_d_t, d_omega_d_kappa])
a_6 = np.array([d_t_d_e_y, d_t_d_e_psi, d_t_d_v_x, d_t_d_v_y, d_t_d_omega, d_t_d_t, d_t_d_kappa])
a_7 = np.array([0, 0, 0, 0, 0, 0, 1])
A = np.stack((a_1, a_2, a_3, a_4, a_5, a_6, a_7), axis=0) * delta_s
A[0, 0] += 1
A[1, 1] += 1
A[2, 2] += 1
A[3, 3] += 1
A[4, 4] += 1
A[5, 5] += 1
b_1 = np.array([d_e_y_d_D, d_e_y_d_delta])
b_2 = np.array([d_e_psi_d_D, d_e_psi_d_delta])
b_3 = np.array([d_v_x_d_D, d_v_x_d_delta])
b_4 = np.array([d_v_y_d_D, d_v_y_d_delta])
b_5 = np.array([d_omega_d_D, d_omega_d_delta])
b_6 = np.array([d_t_d_D, d_t_d_delta])
b_7 = np.array([0, 0])
B = np.stack((b_1, b_2, b_3, b_4, b_5, b_6, b_7), axis=0) * delta_s
# set system matrices
return A, B