Multi-Purpose-MPC/lidar_model.py

149 lines
5.5 KiB
Python
Raw Normal View History

2019-12-05 06:28:29 +08:00
from map import Map
import matplotlib.pyplot as plt
import numpy as np
import math
import time
SCAN = '#5DADE2'
class LidarModel:
"""
Lidar Model
"""
def __init__(self, FoV, range, resolution):
"""
Constructor for Lidar object.
:param FoV: Sensor's Field of View in °
:param range: range in m
:param resolution: resolution in °
"""
# set sensor parameters
self.FoV = FoV
self.range = range
self.resolution = resolution
# number of measurements
self.n_measurements = int(self.FoV/self.resolution + 1)
# construct measurement container
angles = np.linspace(-math.pi / 360 * self.FoV,
math.pi / 360 * self.FoV,
self.n_measurements)
ranges = np.ones(self.n_measurements) * self.range
self.measurements = np.stack((angles, ranges), axis=0)
def scan(self, car, map):
"""
Get a Lidar Scan estimate
:param car: state containing x and y coordinates of the sensor
:param map: map object
:return: self with updated self.measurements
"""
start = time.time()
# reset measurements
self.measurements[1, :] = np.ones(self.n_measurements) * self.range
# flip map upside-down to allow for normal indexing of y axis
#map.data = np.flipud(map.data)
# get sensor's map pose
x, y = map.w2m(car.x, car.y)
# get center of mass
xc = x + 0.5
yc = y + 0.5
# get sensor range in px values
range_px = int(self.range / map.resolution)
# iterate over area within sensor's range
for i in range(x - range_px, x + range_px + 1):
if 0 <= i < map.width:
for j in range(y - range_px, y + range_px + 1):
if 0 <= j < map.height:
# if obstacle detected
if map.data[j, i] == 0:
# get center of mass of cell
xc_target = i + 0.5
yc_target = j + 0.5
# check all corner's of cell
cell_angles = []
for k in range(-1, 2):
for l in range(-1, 2):
dy = yc_target + l/2 - yc
dx = xc_target + k/2 - xc
cell_angle = np.arctan2(dy, dx) - car.psi
if cell_angle < - math.pi:
cell_angle = -np.mod(math.pi+cell_angle, 2*math.pi) + math.pi
else:
cell_angle = np.mod(math.pi+cell_angle, 2*math.pi) - math.pi
cell_angles.append(cell_angle)
# get min and max angle hitting respective cell
min_angle = np.min(cell_angles)
max_angle = np.max(cell_angles)
# get distance to mass center of cell
cell_distance = np.sqrt(
(xc - xc_target)**2 + (yc - yc_target)**2)
# get IDs of all laser beams hitting cell
valid_beam_ids = []
if min_angle < -math.pi/2 and max_angle > math.pi/2:
for beam_id in range(self.n_measurements):
if max_angle <= self.measurements[0, beam_id] <= min_angle:
valid_beam_ids.append(beam_id)
else:
for beam_id in range(self.n_measurements):
if min_angle <= self.measurements[0, beam_id] <= max_angle:
valid_beam_ids.append(beam_id)
# update distance for all valid laser beams
for beam_id in valid_beam_ids:
if cell_distance < self.measurements[1, beam_id] / map.resolution:
self.measurements[1, beam_id] = cell_distance * map.resolution
#map.data = np.flipud(map.data)
end = time.time()
print('Time elapsed: ', end - start)
def plot_scan(self, car):
"""
Display current sensor measurements.
:param car: state containing x and y coordinate of sensor
"""
start = time.time()
# get beam endpoints
beam_end_x = self.measurements[1, :] * np.cos(self.measurements[0, :] + car.psi)
beam_end_y = self.measurements[1, :] * np.sin(self.measurements[0, :] + car.psi)
# plot all laser beams
for i in range(self.n_measurements):
plt.plot((car.x, car.x+beam_end_x[i]), (car.y, car.y+beam_end_y[i]), c=SCAN)
end = time.time()
print('Time elapsed: ', end - start)
if __name__ == '__main__':
# Create Map
map = Map('map_floor2.png')
plt.imshow(map.data, cmap='gray',
extent=[map.origin[0], map.origin[0] +
map.width * map.resolution,
map.origin[1], map.origin[1] +
map.height * map.resolution])
car = BicycleModel(x=-4.9, y=-5.0, yaw=0.9)
sensor = LidarModel(FoV=180, range=5, resolution=1)
sensor.scan(car, map)
sensor.plot_scan(car)
plt.axis('equal')
plt.show()