Motion_EC_HC32_archived/rt-thread/libcpu/arm/zynqmp-r5/cache.c

450 lines
10 KiB
C
Raw Normal View History

2022-01-10 16:20:39 +08:00
/*
* Copyright (c) 2006 - 2021, RT-Thread Development Team
* Copyright (c) 2014 - 2020 Xilinx, Inc. All rights reserved.
* Copyright (c) 2021 WangHuachen. All rights reserved.
* SPDX-License-Identifier: MIT
*
* Change Logs:
* Date Author Notes
* 2020-03-19 WangHuachen first version
* 2021-05-10 WangHuachen add more functions
*/
#include <stdint.h>
#include <rthw.h>
#include <rtdef.h>
#include "xpseudo_asm_gcc.h"
#include "xreg_cortexr5.h"
#define IRQ_FIQ_MASK 0xC0 /* Mask IRQ and FIQ interrupts in cpsr */
typedef intptr_t INTPTR;
typedef rt_uint32_t u32;
#if defined (__GNUC__)
#define asm_inval_dc_line_mva_poc(param) __asm__ __volatile__("mcr " \
XREG_CP15_INVAL_DC_LINE_MVA_POC :: "r" (param))
#define asm_clean_inval_dc_line_sw(param) __asm__ __volatile__("mcr " \
XREG_CP15_CLEAN_INVAL_DC_LINE_SW :: "r" (param))
#define asm_clean_inval_dc_line_mva_poc(param) __asm__ __volatile__("mcr " \
XREG_CP15_CLEAN_INVAL_DC_LINE_MVA_POC :: "r" (param))
#define asm_inval_ic_line_mva_pou(param) __asm__ __volatile__("mcr " \
XREG_CP15_INVAL_IC_LINE_MVA_POU :: "r" (param))
#elif defined (__ICCARM__)
#define asm_inval_dc_line_mva_poc(param) __asm volatile("mcr " \
XREG_CP15_INVAL_DC_LINE_MVA_POC :: "r" (param))
#define asm_clean_inval_dc_line_sw(param) __asm volatile("mcr " \
XREG_CP15_CLEAN_INVAL_DC_LINE_SW :: "r" (param))
#define asm_clean_inval_dc_line_mva_poc(param) __asm volatile("mcr " \
XREG_CP15_CLEAN_INVAL_DC_LINE_MVA_POC :: "r" (param))
#define asm_inval_ic_line_mva_pou(param) __asm volatile("mcr " \
XREG_CP15_INVAL_IC_LINE_MVA_POU :: "r" (param))
#endif
void Xil_DCacheEnable(void);
void Xil_DCacheDisable(void);
void Xil_DCacheInvalidate(void);
void Xil_DCacheInvalidateRange(INTPTR adr, u32 len);
void Xil_DCacheFlush(void);
void Xil_DCacheFlushRange(INTPTR adr, u32 len);
void Xil_DCacheInvalidateLine(INTPTR adr);
void Xil_DCacheFlushLine(INTPTR adr);
void Xil_DCacheStoreLine(INTPTR adr);
void Xil_ICacheEnable(void);
void Xil_ICacheDisable(void);
void Xil_ICacheInvalidate(void);
void Xil_ICacheInvalidateRange(INTPTR adr, u32 len);
void Xil_ICacheInvalidateLine(INTPTR adr);
void Xil_DCacheEnable(void)
{
register u32 CtrlReg;
/* enable caches only if they are disabled */
#if defined (__GNUC__)
CtrlReg = mfcp(XREG_CP15_SYS_CONTROL);
#elif defined (__ICCARM__)
mfcp(XREG_CP15_SYS_CONTROL, CtrlReg);
#endif
if ((CtrlReg & XREG_CP15_CONTROL_C_BIT) == 0x00000000U)
{
/* invalidate the Data cache */
Xil_DCacheInvalidate();
/* enable the Data cache */
CtrlReg |= (XREG_CP15_CONTROL_C_BIT);
mtcp(XREG_CP15_SYS_CONTROL, CtrlReg);
}
}
void Xil_DCacheDisable(void)
{
register u32 CtrlReg;
/* clean and invalidate the Data cache */
Xil_DCacheFlush();
/* disable the Data cache */
#if defined (__GNUC__)
CtrlReg = mfcp(XREG_CP15_SYS_CONTROL);
#elif defined (__ICCARM__)
mfcp(XREG_CP15_SYS_CONTROL, CtrlReg);
#endif
CtrlReg &= ~(XREG_CP15_CONTROL_C_BIT);
mtcp(XREG_CP15_SYS_CONTROL, CtrlReg);
}
void Xil_DCacheInvalidate(void)
{
u32 currmask;
currmask = mfcpsr();
mtcpsr(currmask | IRQ_FIQ_MASK);
mtcp(XREG_CP15_CACHE_SIZE_SEL, 0);
/*invalidate all D cache*/
mtcp(XREG_CP15_INVAL_DC_ALL, 0);
mtcpsr(currmask);
}
void Xil_DCacheInvalidateLine(INTPTR adr)
{
u32 currmask;
currmask = mfcpsr();
mtcpsr(currmask | IRQ_FIQ_MASK);
mtcp(XREG_CP15_CACHE_SIZE_SEL, 0);
mtcp(XREG_CP15_INVAL_DC_LINE_MVA_POC, (adr & (~0x1F)));
/* Wait for invalidate to complete */
dsb();
mtcpsr(currmask);
}
void Xil_DCacheInvalidateRange(INTPTR adr, u32 len)
{
const u32 cacheline = 32U;
u32 end;
u32 tempadr = adr;
u32 tempend;
u32 currmask;
currmask = mfcpsr();
mtcpsr(currmask | IRQ_FIQ_MASK);
if (len != 0U)
{
end = tempadr + len;
tempend = end;
/* Select L1 Data cache in CSSR */
mtcp(XREG_CP15_CACHE_SIZE_SEL, 0U);
if ((tempadr & (cacheline - 1U)) != 0U)
{
tempadr &= (~(cacheline - 1U));
Xil_DCacheFlushLine(tempadr);
}
if ((tempend & (cacheline - 1U)) != 0U)
{
tempend &= (~(cacheline - 1U));
Xil_DCacheFlushLine(tempend);
}
while (tempadr < tempend)
{
/* Invalidate Data cache line */
asm_inval_dc_line_mva_poc(tempadr);
tempadr += cacheline;
}
}
dsb();
mtcpsr(currmask);
}
void Xil_DCacheFlush(void)
{
register u32 CsidReg, C7Reg;
u32 CacheSize, LineSize, NumWays;
u32 Way, WayIndex, Set, SetIndex, NumSet;
u32 currmask;
currmask = mfcpsr();
mtcpsr(currmask | IRQ_FIQ_MASK);
/* Select cache level 0 and D cache in CSSR */
mtcp(XREG_CP15_CACHE_SIZE_SEL, 0);
#if defined (__GNUC__)
CsidReg = mfcp(XREG_CP15_CACHE_SIZE_ID);
#elif defined (__ICCARM__)
mfcp(XREG_CP15_CACHE_SIZE_ID, CsidReg);
#endif
/* Determine Cache Size */
CacheSize = (CsidReg >> 13U) & 0x000001FFU;
CacheSize += 0x00000001U;
CacheSize *= (u32)128; /* to get number of bytes */
/* Number of Ways */
NumWays = (CsidReg & 0x000003ffU) >> 3U;
NumWays += 0x00000001U;
/* Get the cacheline size, way size, index size from csidr */
LineSize = (CsidReg & 0x00000007U) + 0x00000004U;
NumSet = CacheSize / NumWays;
NumSet /= (0x00000001U << LineSize);
Way = 0U;
Set = 0U;
/* Invalidate all the cachelines */
for (WayIndex = 0U; WayIndex < NumWays; WayIndex++)
{
for (SetIndex = 0U; SetIndex < NumSet; SetIndex++)
{
C7Reg = Way | Set;
/* Flush by Set/Way */
asm_clean_inval_dc_line_sw(C7Reg);
Set += (0x00000001U << LineSize);
}
Set = 0U;
Way += 0x40000000U;
}
/* Wait for flush to complete */
dsb();
mtcpsr(currmask);
mtcpsr(currmask);
}
void Xil_DCacheFlushLine(INTPTR adr)
{
u32 currmask;
currmask = mfcpsr();
mtcpsr(currmask | IRQ_FIQ_MASK);
mtcp(XREG_CP15_CACHE_SIZE_SEL, 0);
mtcp(XREG_CP15_CLEAN_INVAL_DC_LINE_MVA_POC, (adr & (~0x1F)));
/* Wait for flush to complete */
dsb();
mtcpsr(currmask);
}
void Xil_DCacheFlushRange(INTPTR adr, u32 len)
{
u32 LocalAddr = adr;
const u32 cacheline = 32U;
u32 end;
u32 currmask;
currmask = mfcpsr();
mtcpsr(currmask | IRQ_FIQ_MASK);
if (len != 0x00000000U)
{
/* Back the starting address up to the start of a cache line
* perform cache operations until adr+len
*/
end = LocalAddr + len;
LocalAddr &= ~(cacheline - 1U);
while (LocalAddr < end)
{
/* Flush Data cache line */
asm_clean_inval_dc_line_mva_poc(LocalAddr);
LocalAddr += cacheline;
}
}
dsb();
mtcpsr(currmask);
}
void Xil_DCacheStoreLine(INTPTR adr)
{
u32 currmask;
currmask = mfcpsr();
mtcpsr(currmask | IRQ_FIQ_MASK);
mtcp(XREG_CP15_CACHE_SIZE_SEL, 0);
mtcp(XREG_CP15_CLEAN_DC_LINE_MVA_POC, (adr & (~0x1F)));
/* Wait for store to complete */
dsb();
isb();
mtcpsr(currmask);
}
void Xil_ICacheEnable(void)
{
register u32 CtrlReg;
/* enable caches only if they are disabled */
#if defined (__GNUC__)
CtrlReg = mfcp(XREG_CP15_SYS_CONTROL);
#elif defined (__ICCARM__)
mfcp(XREG_CP15_SYS_CONTROL, CtrlReg);
#endif
if ((CtrlReg & XREG_CP15_CONTROL_I_BIT) == 0x00000000U)
{
/* invalidate the instruction cache */
mtcp(XREG_CP15_INVAL_IC_POU, 0);
/* enable the instruction cache */
CtrlReg |= (XREG_CP15_CONTROL_I_BIT);
mtcp(XREG_CP15_SYS_CONTROL, CtrlReg);
}
}
void Xil_ICacheDisable(void)
{
register u32 CtrlReg;
dsb();
/* invalidate the instruction cache */
mtcp(XREG_CP15_INVAL_IC_POU, 0);
/* disable the instruction cache */
#if defined (__GNUC__)
CtrlReg = mfcp(XREG_CP15_SYS_CONTROL);
#elif defined (__ICCARM__)
mfcp(XREG_CP15_SYS_CONTROL, CtrlReg);
#endif
CtrlReg &= ~(XREG_CP15_CONTROL_I_BIT);
mtcp(XREG_CP15_SYS_CONTROL, CtrlReg);
}
void Xil_ICacheInvalidate(void)
{
u32 currmask;
currmask = mfcpsr();
mtcpsr(currmask | IRQ_FIQ_MASK);
mtcp(XREG_CP15_CACHE_SIZE_SEL, 1);
/* invalidate the instruction cache */
mtcp(XREG_CP15_INVAL_IC_POU, 0);
/* Wait for invalidate to complete */
dsb();
mtcpsr(currmask);
}
void Xil_ICacheInvalidateLine(INTPTR adr)
{
u32 currmask;
currmask = mfcpsr();
mtcpsr(currmask | IRQ_FIQ_MASK);
mtcp(XREG_CP15_CACHE_SIZE_SEL, 1);
mtcp(XREG_CP15_INVAL_IC_LINE_MVA_POU, (adr & (~0x1F)));
/* Wait for invalidate to complete */
dsb();
mtcpsr(currmask);
}
void Xil_ICacheInvalidateRange(INTPTR adr, u32 len)
{
u32 LocalAddr = adr;
const u32 cacheline = 32U;
u32 end;
u32 currmask;
currmask = mfcpsr();
mtcpsr(currmask | IRQ_FIQ_MASK);
if (len != 0x00000000U)
{
/* Back the starting address up to the start of a cache line
* perform cache operations until adr+len
*/
end = LocalAddr + len;
LocalAddr = LocalAddr & ~(cacheline - 1U);
/* Select cache L0 I-cache in CSSR */
mtcp(XREG_CP15_CACHE_SIZE_SEL, 1U);
while (LocalAddr < end)
{
/* Invalidate L1 I-cache line */
asm_inval_ic_line_mva_pou(LocalAddr);
LocalAddr += cacheline;
}
}
/* Wait for invalidate to complete */
dsb();
mtcpsr(currmask);
}
void rt_hw_cpu_icache_ops(int ops, void *addr, int size)
{
if (ops == RT_HW_CACHE_INVALIDATE)
Xil_ICacheInvalidateRange((INTPTR)addr, size);
}
void rt_hw_cpu_dcache_ops(int ops, void *addr, int size)
{
if (ops == RT_HW_CACHE_FLUSH)
Xil_DCacheFlushRange((intptr_t)addr, size);
else if (ops == RT_HW_CACHE_INVALIDATE)
Xil_DCacheInvalidateRange((intptr_t)addr, size);
}
rt_base_t rt_hw_cpu_icache_status(void)
{
register u32 CtrlReg;
#if defined (__GNUC__)
CtrlReg = mfcp(XREG_CP15_SYS_CONTROL);
#elif defined (__ICCARM__)
mfcp(XREG_CP15_SYS_CONTROL, CtrlReg);
#endif
return CtrlReg & XREG_CP15_CONTROL_I_BIT;
}
rt_base_t rt_hw_cpu_dcache_status(void)
{
register u32 CtrlReg;
#if defined (__GNUC__)
CtrlReg = mfcp(XREG_CP15_SYS_CONTROL);
#elif defined (__ICCARM__)
mfcp(XREG_CP15_SYS_CONTROL, CtrlReg);
#endif
return CtrlReg & XREG_CP15_CONTROL_C_BIT;
}