MPC-CBF/examples/MPCDC.m

144 lines
5.2 KiB
Matlab
Raw Permalink Normal View History

2021-02-25 17:26:33 +08:00
classdef MPCDC < handle
2020-09-25 05:24:22 +08:00
% MPC with distance constraints
properties
system
params
x0
x_curr
time_curr = 0.0
xlog = []
ulog = []
distlog = []
solvertime = []
xopenloop = {}
uopenloop = {}
u_cost = 0
obs
end
methods
2021-02-25 17:26:33 +08:00
function self = MPCDC(x0, system, params)
2020-09-25 05:24:22 +08:00
% Define MPC_DC controller
self.x0 = x0;
self.x_curr = x0;
self.system = system;
self.params = params;
end
function sim(self, time)
% Simulate the system until a given time
xk = self.x_curr;
while self.time_curr <= time
% Solve CFTOC
2021-02-25 17:26:33 +08:00
[~, uk] = self.solveMPCDC(self.x_curr);
2020-09-25 05:24:22 +08:00
xk = self.system.A * xk + self.system.B * uk;
% update system
self.x_curr = xk;
self.time_curr = self.time_curr + self.system.dt;
self.xlog = [self.xlog, xk];
self.ulog = [self.ulog, uk];
self.u_cost = self.u_cost + uk'*uk*self.system.dt;
end
end
2021-02-25 17:26:33 +08:00
function [xopt, uopt] = solveMPCDC(self, xk)
2020-09-25 05:24:22 +08:00
% Solve MPC-DC
[feas, x, u, J] = self.solve_cftoc(xk);
if ~feas
xopt = [];
uopt = [];
return
else
xopt = x(:,2);
uopt = u(:,1);
end
end
function [feas, xopt, uopt, Jopt] = solve_cftoc(self, xk)
% Solve CFTOC
% extract variables
N = self.params.N;
% define variables and cost
x = sdpvar(4, N+1);
u = sdpvar(2, N);
constraints = [];
cost = 0;
% initial constraint
constraints = [constraints; x(:,1) == xk];
% add constraints and costs
for i = 1:N
constraints = [constraints;
self.system.xl <= x(:,i) <= self.system.xu;
self.system.ul <= u(:,i) <= self.system.uu
x(:,i+1) == self.system.A * x(:,i) + self.system.B * u(:,i)];
cost = cost + x(:,i)'*self.params.Q*x(:,i) + u(:,i)'*self.params.R*u(:,i);
end
% add CBF constraints
for i = 1:N
pos = self.obs.pos;
r = self.obs.r ;
b = (x([1:2],i)-pos)'*((x([1:2],i)-pos)) - r^2;
constraints = [constraints; b >= 0];
end
% add terminal cost
cost = cost + x(:,N+1)'*self.params.P*x(:,N+1);
ops = sdpsettings('solver','ipopt','verbose',0);
% solve optimization
diagnostics = optimize(constraints, cost, ops);
if diagnostics.problem == 0
feas = true;
xopt = value(x);
uopt = value(u);
Jopt = value(cost);
else
feas = false;
xopt = [];
uopt = [];
Jopt = [];
end
self.distlog = [self.distlog, sqrt((xk(1:2)-pos)'*(xk(1:2)-pos)-r^2)];
self.xopenloop{size(self.xopenloop,2)+1} = xopt;
self.uopenloop{size(self.uopenloop,2)+1} = uopt;
self.solvertime = [self.solvertime, diagnostics.solvertime];
fprintf('solver time: %f\n', diagnostics.solvertime);
end
function plot(self, figure_name)
% Plot simulation
figure('Renderer', 'painters', 'Position', [0 0 400 400]);
set(gca,'LooseInset',get(gca,'TightInset'));
hold on;
% plot closed-loop trajectory
plot(self.xlog(1,:), self.xlog(2,:), 'ko-',...
'LineWidth', 1.0, 'MarkerSize', 4);
% plot open-loop trajectory
for i = 1:size(self.xopenloop, 2)
plot(self.xopenloop{i}(1,:), self.xopenloop{i}(2,:),...
'k*-.', 'LineWidth', 0.5,'MarkerSize',0.5)
end
% plot obstacle
pos = self.obs.pos;
r = self.obs.r;
th = linspace(0,2*pi*100);
x = cos(th) ; y = sin(th) ;
plot(pos(1) + r*x, pos(2) + r*y, 'Color', [0.8500, 0.3250, 0.0980],...
'LineWidth', 2);
plot(pos(1), pos(2), 'Color', [0.8500, 0.3250, 0.0980],...
'MarkerSize', 5, 'LineWidth', 2);
% plot target position
plot(self.x0(1), self.x0(2), 'db', 'LineWidth', 1);
plot(0.0, 0.0, 'dr', 'LineWidth', 1);
h=get(gca,'Children');
h_legend = legend(h([end]), {'MPC-DC'}, 'Location', 'SouthEast');
set(h_legend, 'Interpreter','latex');
set(gca,'LineWidth', 0.2, 'FontSize', 15);
grid on
xlabel('$x (m)$','interpreter','latex','FontSize',20);
ylabel('$y (m)$','interpreter','latex','FontSize',20);
xticks(-5:0);
yticks(-5:0);
xlim([-5,0.2]);
ylim([-5,0.2]);
print(gcf,strcat('figures/',figure_name), '-depsc');
end
end
end