141 lines
4.4 KiB
C++
141 lines
4.4 KiB
C++
#ifndef COMMON_LIB_H
|
|
#define COMMON_LIB_H
|
|
|
|
#include <Exp_mat.h>
|
|
#include <Eigen/Eigen>
|
|
#include <pcl/point_types.h>
|
|
#include <pcl/point_cloud.h>
|
|
#include <fast_lio/States.h>
|
|
#include <fast_lio/Pose6D.h>
|
|
#include <sensor_msgs/Imu.h>
|
|
#include <nav_msgs/Odometry.h>
|
|
#include <tf/transform_broadcaster.h>
|
|
#include <eigen_conversions/eigen_msg.h>
|
|
|
|
|
|
// #define DEBUG_PRINT
|
|
|
|
#define PI_M (3.14159265358)
|
|
#define G_m_s2 (9.8099) // Gravaty const in GuangDong/China
|
|
#define DIM_OF_STATES (18) // Dimension of states (Let Dim(SO(3)) = 3)
|
|
#define DIM_OF_PROC_N (12) // Dimension of process noise (Let Dim(SO(3)) = 3)
|
|
#define CUBE_LEN (6.0)
|
|
#define LIDAR_SP_LEN (2)
|
|
#define INIT_COV (0.0001)
|
|
|
|
#define VEC_FROM_ARRAY(v) v[0],v[1],v[2]
|
|
#define MAT_FROM_ARRAY(v) v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8]
|
|
#define CONSTRAIN(v,min,max) ((v>min)?((v<max)?v:max):min)
|
|
#define ARRAY_FROM_EIGEN(mat) mat.data(), mat.data() + mat.rows() * mat.cols()
|
|
#define STD_VEC_FROM_EIGEN(mat) std::vector<decltype(mat)::Scalar> (mat.data(), mat.data() + mat.rows() * mat.cols())
|
|
|
|
#define DEBUG_FILE_DIR(name) (std::string(std::string(ROOT_DIR) + "Log/"+ name))
|
|
|
|
typedef fast_lio::Pose6D Pose6D;
|
|
typedef pcl::PointXYZINormal PointType;
|
|
typedef pcl::PointCloud<PointType> PointCloudXYZI;
|
|
|
|
Eigen::Matrix3d Eye3d(Eigen::Matrix3d::Identity());
|
|
Eigen::Matrix3f Eye3f(Eigen::Matrix3f::Identity());
|
|
Eigen::Vector3d Zero3d(0, 0, 0);
|
|
Eigen::Vector3f Zero3f(0, 0, 0);
|
|
// Eigen::Vector3d Lidar_offset_to_IMU(0.05512, 0.02226, 0.0297); // Horizon
|
|
Eigen::Vector3d Lidar_offset_to_IMU(0.04165, 0.02326, -0.0284); // Avia
|
|
|
|
struct MeasureGroup // Lidar data and imu dates for the curent process
|
|
{
|
|
MeasureGroup()
|
|
{
|
|
this->lidar.reset(new PointCloudXYZI());
|
|
};
|
|
double lidar_beg_time;
|
|
PointCloudXYZI::Ptr lidar;
|
|
std::deque<sensor_msgs::Imu::ConstPtr> imu;
|
|
};
|
|
|
|
struct StatesGroup
|
|
{
|
|
StatesGroup() {
|
|
this->rot_end = Eigen::Matrix3d::Identity();
|
|
this->pos_end = Zero3d;
|
|
this->vel_end = Zero3d;
|
|
this->bias_g = Zero3d;
|
|
this->bias_a = Zero3d;
|
|
this->gravity = Zero3d;
|
|
this->cov = Eigen::Matrix<double,DIM_OF_STATES,DIM_OF_STATES>::Identity() * INIT_COV;
|
|
};
|
|
|
|
StatesGroup& operator+=(const Eigen::Matrix<double, DIM_OF_STATES, 1> &state_add)
|
|
{
|
|
this->rot_end = this->rot_end * Exp(state_add(0,0), state_add(1,0), state_add(2,0));
|
|
this->pos_end += state_add.block<3,1>(3,0);
|
|
this->vel_end += state_add.block<3,1>(6,0);
|
|
this->bias_g += state_add.block<3,1>(9,0);
|
|
this->bias_a += state_add.block<3,1>(12,0);
|
|
this->gravity += state_add.block<3,1>(15,0);
|
|
return *this;
|
|
};
|
|
|
|
Eigen::Matrix3d rot_end; // the estimated attitude (rotation matrix) at the end lidar point
|
|
Eigen::Vector3d pos_end; // the estimated position at the end lidar point (world frame)
|
|
Eigen::Vector3d vel_end; // the estimated velocity at the end lidar point (world frame)
|
|
Eigen::Vector3d bias_g; // gyroscope bias
|
|
Eigen::Vector3d bias_a; // accelerator bias
|
|
Eigen::Vector3d gravity; // the estimated gravity acceleration
|
|
Eigen::Matrix<double, DIM_OF_STATES, DIM_OF_STATES> cov; // states covariance
|
|
};
|
|
|
|
template<typename T>
|
|
T rad2deg(T radians)
|
|
{
|
|
return radians * 180.0 / PI_M;
|
|
}
|
|
|
|
template<typename T>
|
|
T deg2rad(T degrees)
|
|
{
|
|
return degrees * PI_M / 180.0;
|
|
}
|
|
|
|
template<typename T>
|
|
auto set_pose6d(const double t, const Eigen::Matrix<T, 3, 1> &a, const Eigen::Matrix<T, 3, 1> &g, \
|
|
const Eigen::Matrix<T, 3, 1> &v, const Eigen::Matrix<T, 3, 1> &p, const Eigen::Matrix<T, 3, 3> &R)
|
|
{
|
|
Pose6D rot_kp;
|
|
rot_kp.offset_time = t;
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
rot_kp.acc[i] = a(i);
|
|
rot_kp.gyr[i] = g(i);
|
|
rot_kp.vel[i] = v(i);
|
|
rot_kp.pos[i] = p(i);
|
|
for (int j = 0; j < 3; j++) rot_kp.rot[i*3+j] = R(i,j);
|
|
}
|
|
// Eigen::Map<Eigen::Matrix3d>(rot_kp.rot, 3,3) = R;
|
|
return std::move(rot_kp);
|
|
}
|
|
|
|
template<typename T>
|
|
Eigen::Matrix<T, 3, 1> RotMtoEuler(const Eigen::Matrix<T, 3, 3> &rot)
|
|
{
|
|
T sy = sqrt(rot(0,0)*rot(0,0) + rot(1,0)*rot(1,0));
|
|
bool singular = sy < 1e-6;
|
|
T x, y, z;
|
|
if(!singular)
|
|
{
|
|
x = atan2(rot(2, 1), rot(2, 2));
|
|
y = atan2(-rot(2, 0), sy);
|
|
z = atan2(rot(1, 0), rot(0, 0));
|
|
}
|
|
else
|
|
{
|
|
x = atan2(-rot(1, 2), rot(1, 1));
|
|
y = atan2(-rot(2, 0), sy);
|
|
z = 0;
|
|
}
|
|
Eigen::Matrix<T, 3, 1> ang(x, y, z);
|
|
return ang;
|
|
}
|
|
|
|
#endif
|