// This is an advanced implementation of the algorithm described in the // following paper: // J. Zhang and S. Singh. LOAM: Lidar Odometry and Mapping in Real-time. // Robotics: Science and Systems Conference (RSS). Berkeley, CA, July 2014. // Modifier: Livox dev@livoxtech.com // Copyright 2013, Ji Zhang, Carnegie Mellon University // Further contributions copyright (c) 2016, Southwest Research Institute // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // 2. Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // 3. Neither the name of the copyright holder nor the names of its // contributors may be used to endorse or promote products derived from this // software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. #include #include #include #include #include #include #include #include #include #include #include #include "IMU_Processing.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "preprocess.h" #include #define INIT_TIME (0.1) #define LASER_POINT_COV (0.001) #define MAXN (720000) #define PUBFRAME_PERIOD (20) /*** Time Log Variables ***/ double kdtree_incremental_time = 0.0, kdtree_search_time = 0.0, kdtree_delete_time = 0.0; double T1[MAXN], s_plot[MAXN], s_plot2[MAXN], s_plot3[MAXN], s_plot4[MAXN], s_plot5[MAXN], s_plot6[MAXN], s_plot7[MAXN], s_plot8[MAXN], s_plot9[MAXN], s_plot10[MAXN], s_plot11[MAXN]; double match_time = 0, solve_time = 0, solve_const_H_time = 0; int kdtree_size_st = 0, kdtree_size_end = 0, add_point_size = 0, kdtree_delete_counter = 0; bool runtime_pos_log = false, pcd_save_en = false, time_sync_en = false, extrinsic_est_en = true, path_en = true; /**************************/ float res_last[100000] = {0.0}; float DET_RANGE = 300.0f; const float MOV_THRESHOLD = 1.5f; mutex mtx_buffer; condition_variable sig_buffer; string root_dir = ROOT_DIR; string map_file_path, lid_topic, imu_topic; double res_mean_last = 0.05, total_residual = 0.0; double last_timestamp_lidar = 0, last_timestamp_imu = -1.0; double gyr_cov = 0.1, acc_cov = 0.1, b_gyr_cov = 0.0001, b_acc_cov = 0.0001; double filter_size_corner_min = 0, filter_size_surf_min = 0, filter_size_map_min = 0, fov_deg = 0; double cube_len = 0, HALF_FOV_COS = 0, FOV_DEG = 0, total_distance = 0, lidar_end_time = 0, first_lidar_time = 0.0; int effct_feat_num = 0, time_log_counter = 0, scan_count = 0, publish_count = 0; int iterCount = 0, feats_down_size = 0, NUM_MAX_ITERATIONS = 0, laserCloudValidNum = 0, pcd_save_interval = -1, pcd_index = 0; bool point_selected_surf[100000] = {0}; bool lidar_pushed, flg_first_scan = true, flg_exit = false, flg_EKF_inited; bool scan_pub_en = false, dense_pub_en = false, scan_body_pub_en = false; vector> pointSearchInd_surf; vector cub_needrm; vector Nearest_Points; vector extrinT(3, 0.0); vector extrinR(9, 0.0); deque time_buffer; deque lidar_buffer; deque imu_buffer; PointCloudXYZI::Ptr featsFromMap(new PointCloudXYZI()); PointCloudXYZI::Ptr feats_undistort(new PointCloudXYZI()); PointCloudXYZI::Ptr feats_down_body(new PointCloudXYZI()); PointCloudXYZI::Ptr feats_down_world(new PointCloudXYZI()); PointCloudXYZI::Ptr normvec(new PointCloudXYZI(100000, 1)); PointCloudXYZI::Ptr laserCloudOri(new PointCloudXYZI(100000, 1)); PointCloudXYZI::Ptr corr_normvect(new PointCloudXYZI(100000, 1)); PointCloudXYZI::Ptr _featsArray; pcl::VoxelGrid downSizeFilterSurf; pcl::VoxelGrid downSizeFilterMap; KD_TREE ikdtree; V3F XAxisPoint_body(LIDAR_SP_LEN, 0.0, 0.0); V3F XAxisPoint_world(LIDAR_SP_LEN, 0.0, 0.0); V3D euler_cur; V3D position_last(Zero3d); V3D Lidar_T_wrt_IMU(Zero3d); M3D Lidar_R_wrt_IMU(Eye3d); /*** EKF inputs and output ***/ MeasureGroup Measures; esekfom::esekf kf; state_ikfom state_point; vect3 pos_lid; nav_msgs::Path path; nav_msgs::Odometry odomAftMapped; geometry_msgs::Quaternion geoQuat; geometry_msgs::PoseStamped msg_body_pose; shared_ptr p_pre(new Preprocess()); shared_ptr p_imu(new ImuProcess()); void SigHandle(int sig) { flg_exit = true; ROS_WARN("catch sig %d", sig); sig_buffer.notify_all(); } inline void dump_lio_state_to_log(FILE *fp) { V3D rot_ang(Log(state_point.rot.toRotationMatrix())); fprintf(fp, "%lf ", Measures.lidar_beg_time - first_lidar_time); fprintf(fp, "%lf %lf %lf ", rot_ang(0), rot_ang(1), rot_ang(2)); // Angle fprintf(fp, "%lf %lf %lf ", state_point.pos(0), state_point.pos(1), state_point.pos(2)); // Pos fprintf(fp, "%lf %lf %lf ", 0.0, 0.0, 0.0); // omega fprintf(fp, "%lf %lf %lf ", state_point.vel(0), state_point.vel(1), state_point.vel(2)); // Vel fprintf(fp, "%lf %lf %lf ", 0.0, 0.0, 0.0); // Acc fprintf(fp, "%lf %lf %lf ", state_point.bg(0), state_point.bg(1), state_point.bg(2)); // Bias_g fprintf(fp, "%lf %lf %lf ", state_point.ba(0), state_point.ba(1), state_point.ba(2)); // Bias_a fprintf(fp, "%lf %lf %lf ", state_point.grav[0], state_point.grav[1], state_point.grav[2]); // Bias_a fprintf(fp, "\r\n"); fflush(fp); } void pointBodyToWorld_ikfom(PointType const * const pi, PointType * const po, state_ikfom &s) { V3D p_body(pi->x, pi->y, pi->z); V3D p_global(s.rot * (s.offset_R_L_I*p_body + s.offset_T_L_I) + s.pos); po->x = p_global(0); po->y = p_global(1); po->z = p_global(2); po->intensity = pi->intensity; } void pointBodyToWorld(PointType const * const pi, PointType * const po) { V3D p_body(pi->x, pi->y, pi->z); V3D p_global(state_point.rot * (state_point.offset_R_L_I*p_body + state_point.offset_T_L_I) + state_point.pos); po->x = p_global(0); po->y = p_global(1); po->z = p_global(2); po->intensity = pi->intensity; } template void pointBodyToWorld(const Matrix &pi, Matrix &po) { V3D p_body(pi[0], pi[1], pi[2]); V3D p_global(state_point.rot * (state_point.offset_R_L_I*p_body + state_point.offset_T_L_I) + state_point.pos); po[0] = p_global(0); po[1] = p_global(1); po[2] = p_global(2); } void RGBpointBodyToWorld(PointType const * const pi, PointType * const po) { V3D p_body(pi->x, pi->y, pi->z); V3D p_global(state_point.rot * (state_point.offset_R_L_I*p_body + state_point.offset_T_L_I) + state_point.pos); po->x = p_global(0); po->y = p_global(1); po->z = p_global(2); po->intensity = pi->intensity; } void RGBpointBodyLidarToIMU(PointType const * const pi, PointType * const po) { V3D p_body_lidar(pi->x, pi->y, pi->z); V3D p_body_imu(state_point.offset_R_L_I*p_body_lidar + state_point.offset_T_L_I); po->x = p_body_imu(0); po->y = p_body_imu(1); po->z = p_body_imu(2); po->intensity = pi->intensity; } void points_cache_collect() { PointVector points_history; ikdtree.acquire_removed_points(points_history); for (int i = 0; i < points_history.size(); i++) _featsArray->push_back(points_history[i]); } BoxPointType LocalMap_Points; bool Localmap_Initialized = false; void lasermap_fov_segment() { cub_needrm.clear(); kdtree_delete_counter = 0; kdtree_delete_time = 0.0; pointBodyToWorld(XAxisPoint_body, XAxisPoint_world); V3D pos_LiD = pos_lid; if (!Localmap_Initialized){ for (int i = 0; i < 3; i++){ LocalMap_Points.vertex_min[i] = pos_LiD(i) - cube_len / 2.0; LocalMap_Points.vertex_max[i] = pos_LiD(i) + cube_len / 2.0; } Localmap_Initialized = true; return; } float dist_to_map_edge[3][2]; bool need_move = false; for (int i = 0; i < 3; i++){ dist_to_map_edge[i][0] = fabs(pos_LiD(i) - LocalMap_Points.vertex_min[i]); dist_to_map_edge[i][1] = fabs(pos_LiD(i) - LocalMap_Points.vertex_max[i]); if (dist_to_map_edge[i][0] <= MOV_THRESHOLD * DET_RANGE || dist_to_map_edge[i][1] <= MOV_THRESHOLD * DET_RANGE) need_move = true; } if (!need_move) return; BoxPointType New_LocalMap_Points, tmp_boxpoints; New_LocalMap_Points = LocalMap_Points; float mov_dist = max((cube_len - 2.0 * MOV_THRESHOLD * DET_RANGE) * 0.5 * 0.9, double(DET_RANGE * (MOV_THRESHOLD -1))); for (int i = 0; i < 3; i++){ tmp_boxpoints = LocalMap_Points; if (dist_to_map_edge[i][0] <= MOV_THRESHOLD * DET_RANGE){ New_LocalMap_Points.vertex_max[i] -= mov_dist; New_LocalMap_Points.vertex_min[i] -= mov_dist; tmp_boxpoints.vertex_min[i] = LocalMap_Points.vertex_max[i] - mov_dist; cub_needrm.push_back(tmp_boxpoints); } else if (dist_to_map_edge[i][1] <= MOV_THRESHOLD * DET_RANGE){ New_LocalMap_Points.vertex_max[i] += mov_dist; New_LocalMap_Points.vertex_min[i] += mov_dist; tmp_boxpoints.vertex_max[i] = LocalMap_Points.vertex_min[i] + mov_dist; cub_needrm.push_back(tmp_boxpoints); } } LocalMap_Points = New_LocalMap_Points; points_cache_collect(); double delete_begin = omp_get_wtime(); if(cub_needrm.size() > 0) kdtree_delete_counter = ikdtree.Delete_Point_Boxes(cub_needrm); kdtree_delete_time = omp_get_wtime() - delete_begin; } void standard_pcl_cbk(const sensor_msgs::PointCloud2::ConstPtr &msg) { mtx_buffer.lock(); scan_count ++; double preprocess_start_time = omp_get_wtime(); if (msg->header.stamp.toSec() < last_timestamp_lidar) { ROS_ERROR("lidar loop back, clear buffer"); lidar_buffer.clear(); } PointCloudXYZI::Ptr ptr(new PointCloudXYZI()); p_pre->process(msg, ptr); lidar_buffer.push_back(ptr); time_buffer.push_back(msg->header.stamp.toSec()); last_timestamp_lidar = msg->header.stamp.toSec(); s_plot11[scan_count] = omp_get_wtime() - preprocess_start_time; mtx_buffer.unlock(); sig_buffer.notify_all(); } double timediff_lidar_wrt_imu = 0.0; bool timediff_set_flg = false; void livox_pcl_cbk(const livox_ros_driver::CustomMsg::ConstPtr &msg) { mtx_buffer.lock(); double preprocess_start_time = omp_get_wtime(); scan_count ++; if (msg->header.stamp.toSec() < last_timestamp_lidar) { ROS_ERROR("lidar loop back, clear buffer"); lidar_buffer.clear(); } last_timestamp_lidar = msg->header.stamp.toSec(); if (!time_sync_en && abs(last_timestamp_imu - last_timestamp_lidar) > 10.0 && !imu_buffer.empty() && !lidar_buffer.empty() ) { printf("IMU and LiDAR not Synced, IMU time: %lf, lidar header time: %lf \n",last_timestamp_imu, last_timestamp_lidar); } if (time_sync_en && !timediff_set_flg && abs(last_timestamp_lidar - last_timestamp_imu) > 1 && !imu_buffer.empty()) { timediff_set_flg = true; timediff_lidar_wrt_imu = last_timestamp_lidar + 0.1 - last_timestamp_imu; printf("Self sync IMU and LiDAR, time diff is %.10lf \n", timediff_lidar_wrt_imu); } PointCloudXYZI::Ptr ptr(new PointCloudXYZI()); p_pre->process(msg, ptr); lidar_buffer.push_back(ptr); time_buffer.push_back(last_timestamp_lidar); s_plot11[scan_count] = omp_get_wtime() - preprocess_start_time; mtx_buffer.unlock(); sig_buffer.notify_all(); } void imu_cbk(const sensor_msgs::Imu::ConstPtr &msg_in) { publish_count ++; // cout<<"IMU got at: "<header.stamp.toSec()< 0.1 && time_sync_en) { msg->header.stamp = \ ros::Time().fromSec(timediff_lidar_wrt_imu + msg_in->header.stamp.toSec()); } double timestamp = msg->header.stamp.toSec(); mtx_buffer.lock(); if (timestamp < last_timestamp_imu) { ROS_WARN("imu loop back, clear buffer"); imu_buffer.clear(); } last_timestamp_imu = timestamp; imu_buffer.push_back(msg); mtx_buffer.unlock(); sig_buffer.notify_all(); } double lidar_mean_scantime = 0.0; int scan_num = 0; bool sync_packages(MeasureGroup &meas) { if (lidar_buffer.empty() || imu_buffer.empty()) { return false; } /*** push a lidar scan ***/ if(!lidar_pushed) { meas.lidar = lidar_buffer.front(); meas.lidar_beg_time = time_buffer.front(); if (meas.lidar->points.size() <= 1) // time too little { lidar_end_time = meas.lidar_beg_time + lidar_mean_scantime; ROS_WARN("Too few input point cloud!\n"); } else if (meas.lidar->points.back().curvature / double(1000) < 0.5 * lidar_mean_scantime) { lidar_end_time = meas.lidar_beg_time + lidar_mean_scantime; } else { scan_num ++; lidar_end_time = meas.lidar_beg_time + meas.lidar->points.back().curvature / double(1000); lidar_mean_scantime += (meas.lidar->points.back().curvature / double(1000) - lidar_mean_scantime) / scan_num; } meas.lidar_end_time = lidar_end_time; lidar_pushed = true; } if (last_timestamp_imu < lidar_end_time) { return false; } /*** push imu data, and pop from imu buffer ***/ double imu_time = imu_buffer.front()->header.stamp.toSec(); meas.imu.clear(); while ((!imu_buffer.empty()) && (imu_time < lidar_end_time)) { imu_time = imu_buffer.front()->header.stamp.toSec(); if(imu_time > lidar_end_time) break; meas.imu.push_back(imu_buffer.front()); imu_buffer.pop_front(); } lidar_buffer.pop_front(); time_buffer.pop_front(); lidar_pushed = false; return true; } int process_increments = 0; void map_incremental() { PointVector PointToAdd; PointVector PointNoNeedDownsample; PointToAdd.reserve(feats_down_size); PointNoNeedDownsample.reserve(feats_down_size); for (int i = 0; i < feats_down_size; i++) { /* transform to world frame */ pointBodyToWorld(&(feats_down_body->points[i]), &(feats_down_world->points[i])); /* decide if need add to map */ if (!Nearest_Points[i].empty() && flg_EKF_inited) { const PointVector &points_near = Nearest_Points[i]; bool need_add = true; BoxPointType Box_of_Point; PointType downsample_result, mid_point; mid_point.x = floor(feats_down_world->points[i].x/filter_size_map_min)*filter_size_map_min + 0.5 * filter_size_map_min; mid_point.y = floor(feats_down_world->points[i].y/filter_size_map_min)*filter_size_map_min + 0.5 * filter_size_map_min; mid_point.z = floor(feats_down_world->points[i].z/filter_size_map_min)*filter_size_map_min + 0.5 * filter_size_map_min; float dist = calc_dist(feats_down_world->points[i],mid_point); if (fabs(points_near[0].x - mid_point.x) > 0.5 * filter_size_map_min && fabs(points_near[0].y - mid_point.y) > 0.5 * filter_size_map_min && fabs(points_near[0].z - mid_point.z) > 0.5 * filter_size_map_min){ PointNoNeedDownsample.push_back(feats_down_world->points[i]); continue; } for (int readd_i = 0; readd_i < NUM_MATCH_POINTS; readd_i ++) { if (points_near.size() < NUM_MATCH_POINTS) break; if (calc_dist(points_near[readd_i], mid_point) < dist) { need_add = false; break; } } if (need_add) PointToAdd.push_back(feats_down_world->points[i]); } else { PointToAdd.push_back(feats_down_world->points[i]); } } double st_time = omp_get_wtime(); add_point_size = ikdtree.Add_Points(PointToAdd, true); ikdtree.Add_Points(PointNoNeedDownsample, false); add_point_size = PointToAdd.size() + PointNoNeedDownsample.size(); kdtree_incremental_time = omp_get_wtime() - st_time; } PointCloudXYZI::Ptr pcl_wait_pub(new PointCloudXYZI(500000, 1)); PointCloudXYZI::Ptr pcl_wait_save(new PointCloudXYZI()); void publish_frame_world(const ros::Publisher & pubLaserCloudFull) { if(scan_pub_en) { PointCloudXYZI::Ptr laserCloudFullRes(dense_pub_en ? feats_undistort : feats_down_body); int size = laserCloudFullRes->points.size(); PointCloudXYZI::Ptr laserCloudWorld( \ new PointCloudXYZI(size, 1)); for (int i = 0; i < size; i++) { RGBpointBodyToWorld(&laserCloudFullRes->points[i], \ &laserCloudWorld->points[i]); } sensor_msgs::PointCloud2 laserCloudmsg; pcl::toROSMsg(*laserCloudWorld, laserCloudmsg); laserCloudmsg.header.stamp = ros::Time().fromSec(lidar_end_time); laserCloudmsg.header.frame_id = "camera_init"; pubLaserCloudFull.publish(laserCloudmsg); publish_count -= PUBFRAME_PERIOD; } /**************** save map ****************/ /* 1. make sure you have enough memories /* 2. noted that pcd save will influence the real-time performences **/ if (pcd_save_en) { int size = feats_undistort->points.size(); PointCloudXYZI::Ptr laserCloudWorld( \ new PointCloudXYZI(size, 1)); for (int i = 0; i < size; i++) { RGBpointBodyToWorld(&feats_undistort->points[i], \ &laserCloudWorld->points[i]); } *pcl_wait_save += *laserCloudWorld; static int scan_wait_num = 0; scan_wait_num ++; if (pcl_wait_save->size() > 0 && pcd_save_interval > 0 && scan_wait_num >= pcd_save_interval) { pcd_index ++; string all_points_dir(string(string(ROOT_DIR) + "PCD/scans_") + to_string(pcd_index) + string(".pcd")); pcl::PCDWriter pcd_writer; cout << "current scan saved to /PCD/" << all_points_dir << endl; pcd_writer.writeBinary(all_points_dir, *pcl_wait_save); pcl_wait_save->clear(); scan_wait_num = 0; } } } void publish_frame_body(const ros::Publisher & pubLaserCloudFull_body) { int size = feats_undistort->points.size(); PointCloudXYZI::Ptr laserCloudIMUBody(new PointCloudXYZI(size, 1)); for (int i = 0; i < size; i++) { RGBpointBodyLidarToIMU(&feats_undistort->points[i], \ &laserCloudIMUBody->points[i]); } sensor_msgs::PointCloud2 laserCloudmsg; pcl::toROSMsg(*laserCloudIMUBody, laserCloudmsg); laserCloudmsg.header.stamp = ros::Time().fromSec(lidar_end_time); laserCloudmsg.header.frame_id = "body"; pubLaserCloudFull_body.publish(laserCloudmsg); publish_count -= PUBFRAME_PERIOD; } void publish_effect_world(const ros::Publisher & pubLaserCloudEffect) { PointCloudXYZI::Ptr laserCloudWorld( \ new PointCloudXYZI(effct_feat_num, 1)); for (int i = 0; i < effct_feat_num; i++) { RGBpointBodyToWorld(&laserCloudOri->points[i], \ &laserCloudWorld->points[i]); } sensor_msgs::PointCloud2 laserCloudFullRes3; pcl::toROSMsg(*laserCloudWorld, laserCloudFullRes3); laserCloudFullRes3.header.stamp = ros::Time().fromSec(lidar_end_time); laserCloudFullRes3.header.frame_id = "camera_init"; pubLaserCloudEffect.publish(laserCloudFullRes3); } void publish_map(const ros::Publisher & pubLaserCloudMap) { sensor_msgs::PointCloud2 laserCloudMap; pcl::toROSMsg(*featsFromMap, laserCloudMap); laserCloudMap.header.stamp = ros::Time().fromSec(lidar_end_time); laserCloudMap.header.frame_id = "camera_init"; pubLaserCloudMap.publish(laserCloudMap); } template void set_posestamp(T & out) { out.pose.position.x = state_point.pos(0); out.pose.position.y = state_point.pos(1); out.pose.position.z = state_point.pos(2); out.pose.orientation.x = geoQuat.x; out.pose.orientation.y = geoQuat.y; out.pose.orientation.z = geoQuat.z; out.pose.orientation.w = geoQuat.w; } void publish_odometry(const ros::Publisher & pubOdomAftMapped) { odomAftMapped.header.frame_id = "camera_init"; odomAftMapped.child_frame_id = "body"; odomAftMapped.header.stamp = ros::Time().fromSec(lidar_end_time);// ros::Time().fromSec(lidar_end_time); set_posestamp(odomAftMapped.pose); pubOdomAftMapped.publish(odomAftMapped); auto P = kf.get_P(); for (int i = 0; i < 6; i ++) { int k = i < 3 ? i + 3 : i - 3; odomAftMapped.pose.covariance[i*6 + 0] = P(k, 3); odomAftMapped.pose.covariance[i*6 + 1] = P(k, 4); odomAftMapped.pose.covariance[i*6 + 2] = P(k, 5); odomAftMapped.pose.covariance[i*6 + 3] = P(k, 0); odomAftMapped.pose.covariance[i*6 + 4] = P(k, 1); odomAftMapped.pose.covariance[i*6 + 5] = P(k, 2); } static tf::TransformBroadcaster br; tf::Transform transform; tf::Quaternion q; transform.setOrigin(tf::Vector3(odomAftMapped.pose.pose.position.x, \ odomAftMapped.pose.pose.position.y, \ odomAftMapped.pose.pose.position.z)); q.setW(odomAftMapped.pose.pose.orientation.w); q.setX(odomAftMapped.pose.pose.orientation.x); q.setY(odomAftMapped.pose.pose.orientation.y); q.setZ(odomAftMapped.pose.pose.orientation.z); transform.setRotation( q ); br.sendTransform( tf::StampedTransform( transform, odomAftMapped.header.stamp, "camera_init", "body" ) ); } void publish_path(const ros::Publisher pubPath) { set_posestamp(msg_body_pose); msg_body_pose.header.stamp = ros::Time().fromSec(lidar_end_time); msg_body_pose.header.frame_id = "camera_init"; /*** if path is too large, the rvis will crash ***/ static int jjj = 0; jjj++; if (jjj % 10 == 0) { path.poses.push_back(msg_body_pose); pubPath.publish(path); } } void h_share_model(state_ikfom &s, esekfom::dyn_share_datastruct &ekfom_data) { double match_start = omp_get_wtime(); laserCloudOri->clear(); corr_normvect->clear(); total_residual = 0.0; /** closest surface search and residual computation **/ #ifdef MP_EN omp_set_num_threads(MP_PROC_NUM); #pragma omp parallel for #endif for (int i = 0; i < feats_down_size; i++) { PointType &point_body = feats_down_body->points[i]; PointType &point_world = feats_down_world->points[i]; /* transform to world frame */ V3D p_body(point_body.x, point_body.y, point_body.z); V3D p_global(s.rot * (s.offset_R_L_I*p_body + s.offset_T_L_I) + s.pos); point_world.x = p_global(0); point_world.y = p_global(1); point_world.z = p_global(2); point_world.intensity = point_body.intensity; vector pointSearchSqDis(NUM_MATCH_POINTS); auto &points_near = Nearest_Points[i]; if (ekfom_data.converge) { /** Find the closest surfaces in the map **/ ikdtree.Nearest_Search(point_world, NUM_MATCH_POINTS, points_near, pointSearchSqDis); point_selected_surf[i] = points_near.size() < NUM_MATCH_POINTS ? false : pointSearchSqDis[NUM_MATCH_POINTS - 1] > 5 ? false : true; } if (!point_selected_surf[i]) continue; VF(4) pabcd; point_selected_surf[i] = false; if (esti_plane(pabcd, points_near, 0.1f)) { float pd2 = pabcd(0) * point_world.x + pabcd(1) * point_world.y + pabcd(2) * point_world.z + pabcd(3); float s = 1 - 0.9 * fabs(pd2) / sqrt(p_body.norm()); if (s > 0.9) { point_selected_surf[i] = true; normvec->points[i].x = pabcd(0); normvec->points[i].y = pabcd(1); normvec->points[i].z = pabcd(2); normvec->points[i].intensity = pd2; res_last[i] = abs(pd2); } } } effct_feat_num = 0; for (int i = 0; i < feats_down_size; i++) { if (point_selected_surf[i]) { laserCloudOri->points[effct_feat_num] = feats_down_body->points[i]; corr_normvect->points[effct_feat_num] = normvec->points[i]; total_residual += res_last[i]; effct_feat_num ++; } } if (effct_feat_num < 1) { ekfom_data.valid = false; ROS_WARN("No Effective Points! \n"); return; } res_mean_last = total_residual / effct_feat_num; match_time += omp_get_wtime() - match_start; double solve_start_ = omp_get_wtime(); /*** Computation of Measuremnt Jacobian matrix H and measurents vector ***/ ekfom_data.h_x = MatrixXd::Zero(effct_feat_num, 12); //23 ekfom_data.h.resize(effct_feat_num); for (int i = 0; i < effct_feat_num; i++) { const PointType &laser_p = laserCloudOri->points[i]; V3D point_this_be(laser_p.x, laser_p.y, laser_p.z); M3D point_be_crossmat; point_be_crossmat << SKEW_SYM_MATRX(point_this_be); V3D point_this = s.offset_R_L_I * point_this_be + s.offset_T_L_I; M3D point_crossmat; point_crossmat<points[i]; V3D norm_vec(norm_p.x, norm_p.y, norm_p.z); /*** calculate the Measuremnt Jacobian matrix H ***/ V3D C(s.rot.conjugate() *norm_vec); V3D A(point_crossmat * C); if (extrinsic_est_en) { V3D B(point_be_crossmat * s.offset_R_L_I.conjugate() * C); //s.rot.conjugate()*norm_vec); ekfom_data.h_x.block<1, 12>(i,0) << norm_p.x, norm_p.y, norm_p.z, VEC_FROM_ARRAY(A), VEC_FROM_ARRAY(B), VEC_FROM_ARRAY(C); } else { ekfom_data.h_x.block<1, 12>(i,0) << norm_p.x, norm_p.y, norm_p.z, VEC_FROM_ARRAY(A), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0; } /*** Measuremnt: distance to the closest surface/corner ***/ ekfom_data.h(i) = -norm_p.intensity; } solve_time += omp_get_wtime() - solve_start_; } int main(int argc, char** argv) { ros::init(argc, argv, "laserMapping"); ros::NodeHandle nh; nh.param("publish/path_en",path_en, true); nh.param("publish/scan_publish_en",scan_pub_en, true); nh.param("publish/dense_publish_en",dense_pub_en, true); nh.param("publish/scan_bodyframe_pub_en",scan_body_pub_en, true); nh.param("max_iteration",NUM_MAX_ITERATIONS,4); nh.param("map_file_path",map_file_path,""); nh.param("common/lid_topic",lid_topic,"/livox/lidar"); nh.param("common/imu_topic", imu_topic,"/livox/imu"); nh.param("common/time_sync_en", time_sync_en, false); nh.param("filter_size_corner",filter_size_corner_min,0.5); nh.param("filter_size_surf",filter_size_surf_min,0.5); nh.param("filter_size_map",filter_size_map_min,0.5); nh.param("cube_side_length",cube_len,200); nh.param("mapping/det_range",DET_RANGE,300.f); nh.param("mapping/fov_degree",fov_deg,180); nh.param("mapping/gyr_cov",gyr_cov,0.1); nh.param("mapping/acc_cov",acc_cov,0.1); nh.param("mapping/b_gyr_cov",b_gyr_cov,0.0001); nh.param("mapping/b_acc_cov",b_acc_cov,0.0001); nh.param("preprocess/blind", p_pre->blind, 0.01); nh.param("preprocess/lidar_type", p_pre->lidar_type, AVIA); nh.param("preprocess/scan_line", p_pre->N_SCANS, 16); nh.param("preprocess/scan_rate", p_pre->SCAN_RATE, 10); nh.param("point_filter_num", p_pre->point_filter_num, 2); nh.param("feature_extract_enable", p_pre->feature_enabled, false); nh.param("runtime_pos_log_enable", runtime_pos_log, 0); nh.param("mapping/extrinsic_est_en", extrinsic_est_en, true); nh.param("pcd_save/pcd_save_en", pcd_save_en, false); nh.param("pcd_save/interval", pcd_save_interval, -1); nh.param>("mapping/extrinsic_T", extrinT, vector()); nh.param>("mapping/extrinsic_R", extrinR, vector()); cout<<"p_pre->lidar_type "<lidar_type< 179.9 ? 179.9 : (fov_deg + 10.0); HALF_FOV_COS = cos((FOV_DEG) * 0.5 * PI_M / 180.0); _featsArray.reset(new PointCloudXYZI()); memset(point_selected_surf, true, sizeof(point_selected_surf)); memset(res_last, -1000.0f, sizeof(res_last)); downSizeFilterSurf.setLeafSize(filter_size_surf_min, filter_size_surf_min, filter_size_surf_min); downSizeFilterMap.setLeafSize(filter_size_map_min, filter_size_map_min, filter_size_map_min); memset(point_selected_surf, true, sizeof(point_selected_surf)); memset(res_last, -1000.0f, sizeof(res_last)); Lidar_T_wrt_IMU<set_extrinsic(Lidar_T_wrt_IMU, Lidar_R_wrt_IMU); p_imu->set_gyr_cov(V3D(gyr_cov, gyr_cov, gyr_cov)); p_imu->set_acc_cov(V3D(acc_cov, acc_cov, acc_cov)); p_imu->set_gyr_bias_cov(V3D(b_gyr_cov, b_gyr_cov, b_gyr_cov)); p_imu->set_acc_bias_cov(V3D(b_acc_cov, b_acc_cov, b_acc_cov)); double epsi[23] = {0.001}; fill(epsi, epsi+23, 0.001); kf.init_dyn_share(get_f, df_dx, df_dw, h_share_model, NUM_MAX_ITERATIONS, epsi); /*** debug record ***/ FILE *fp; string pos_log_dir = root_dir + "/Log/pos_log.txt"; fp = fopen(pos_log_dir.c_str(),"w"); ofstream fout_pre, fout_out, fout_dbg; fout_pre.open(DEBUG_FILE_DIR("mat_pre.txt"),ios::out); fout_out.open(DEBUG_FILE_DIR("mat_out.txt"),ios::out); fout_dbg.open(DEBUG_FILE_DIR("dbg.txt"),ios::out); if (fout_pre && fout_out) cout << "~~~~"<lidar_type == AVIA ? \ nh.subscribe(lid_topic, 200000, livox_pcl_cbk) : \ nh.subscribe(lid_topic, 200000, standard_pcl_cbk); ros::Subscriber sub_imu = nh.subscribe(imu_topic, 200000, imu_cbk); ros::Publisher pubLaserCloudFull = nh.advertise ("/cloud_registered", 100000); ros::Publisher pubLaserCloudFull_body = nh.advertise ("/cloud_registered_body", 100000); ros::Publisher pubLaserCloudEffect = nh.advertise ("/cloud_effected", 100000); ros::Publisher pubLaserCloudMap = nh.advertise ("/Laser_map", 100000); ros::Publisher pubOdomAftMapped = nh.advertise ("/Odometry", 100000); ros::Publisher pubPath = nh.advertise ("/path", 100000); //------------------------------------------------------------------------------------------------------ signal(SIGINT, SigHandle); ros::Rate rate(5000); bool status = ros::ok(); while (status) { if (flg_exit) break; ros::spinOnce(); if(sync_packages(Measures)) { if (flg_first_scan) { first_lidar_time = Measures.lidar_beg_time; p_imu->first_lidar_time = first_lidar_time; flg_first_scan = false; continue; } double t0,t1,t2,t3,t4,t5,match_start, solve_start, svd_time; match_time = 0; kdtree_search_time = 0.0; solve_time = 0; solve_const_H_time = 0; svd_time = 0; t0 = omp_get_wtime(); p_imu->Process(Measures, kf, feats_undistort); state_point = kf.get_x(); pos_lid = state_point.pos + state_point.rot * state_point.offset_T_L_I; if (feats_undistort->empty() || (feats_undistort == NULL)) { ROS_WARN("No point, skip this scan!\n"); continue; } flg_EKF_inited = (Measures.lidar_beg_time - first_lidar_time) < INIT_TIME ? \ false : true; /*** Segment the map in lidar FOV ***/ lasermap_fov_segment(); /*** downsample the feature points in a scan ***/ downSizeFilterSurf.setInputCloud(feats_undistort); downSizeFilterSurf.filter(*feats_down_body); t1 = omp_get_wtime(); feats_down_size = feats_down_body->points.size(); /*** initialize the map kdtree ***/ if(ikdtree.Root_Node == nullptr) { if(feats_down_size > 5) { ikdtree.set_downsample_param(filter_size_map_min); feats_down_world->resize(feats_down_size); for(int i = 0; i < feats_down_size; i++) { pointBodyToWorld(&(feats_down_body->points[i]), &(feats_down_world->points[i])); } ikdtree.Build(feats_down_world->points); } continue; } int featsFromMapNum = ikdtree.validnum(); kdtree_size_st = ikdtree.size(); // cout<<"[ mapping ]: In num: "<points.size()<<" downsamp "<resize(feats_down_size); feats_down_world->resize(feats_down_size); V3D ext_euler = SO3ToEuler(state_point.offset_R_L_I); fout_pre<clear(); featsFromMap->points = ikdtree.PCL_Storage; } pointSearchInd_surf.resize(feats_down_size); Nearest_Points.resize(feats_down_size); int rematch_num = 0; bool nearest_search_en = true; // t2 = omp_get_wtime(); /*** iterated state estimation ***/ double t_update_start = omp_get_wtime(); double solve_H_time = 0; kf.update_iterated_dyn_share_modified(LASER_POINT_COV, solve_H_time); state_point = kf.get_x(); euler_cur = SO3ToEuler(state_point.rot); pos_lid = state_point.pos + state_point.rot * state_point.offset_T_L_I; geoQuat.x = state_point.rot.coeffs()[0]; geoQuat.y = state_point.rot.coeffs()[1]; geoQuat.z = state_point.rot.coeffs()[2]; geoQuat.w = state_point.rot.coeffs()[3]; double t_update_end = omp_get_wtime(); /******* Publish odometry *******/ publish_odometry(pubOdomAftMapped); /*** add the feature points to map kdtree ***/ t3 = omp_get_wtime(); map_incremental(); t5 = omp_get_wtime(); /******* Publish points *******/ if (path_en) publish_path(pubPath); if (scan_pub_en || pcd_save_en) publish_frame_world(pubLaserCloudFull); if (scan_pub_en && scan_body_pub_en) publish_frame_body(pubLaserCloudFull_body); // publish_effect_world(pubLaserCloudEffect); // publish_map(pubLaserCloudMap); /*** Debug variables ***/ if (runtime_pos_log) { frame_num ++; kdtree_size_end = ikdtree.size(); aver_time_consu = aver_time_consu * (frame_num - 1) / frame_num + (t5 - t0) / frame_num; aver_time_icp = aver_time_icp * (frame_num - 1)/frame_num + (t_update_end - t_update_start) / frame_num; aver_time_match = aver_time_match * (frame_num - 1)/frame_num + (match_time)/frame_num; aver_time_incre = aver_time_incre * (frame_num - 1)/frame_num + (kdtree_incremental_time)/frame_num; aver_time_solve = aver_time_solve * (frame_num - 1)/frame_num + (solve_time + solve_H_time)/frame_num; aver_time_const_H_time = aver_time_const_H_time * (frame_num - 1)/frame_num + solve_time / frame_num; T1[time_log_counter] = Measures.lidar_beg_time; s_plot[time_log_counter] = t5 - t0; s_plot2[time_log_counter] = feats_undistort->points.size(); s_plot3[time_log_counter] = kdtree_incremental_time; s_plot4[time_log_counter] = kdtree_search_time; s_plot5[time_log_counter] = kdtree_delete_counter; s_plot6[time_log_counter] = kdtree_delete_time; s_plot7[time_log_counter] = kdtree_size_st; s_plot8[time_log_counter] = kdtree_size_end; s_plot9[time_log_counter] = aver_time_consu; s_plot10[time_log_counter] = add_point_size; time_log_counter ++; printf("[ mapping ]: time: IMU + Map + Input Downsample: %0.6f ave match: %0.6f ave solve: %0.6f ave ICP: %0.6f map incre: %0.6f ave total: %0.6f icp: %0.6f construct H: %0.6f \n",t1-t0,aver_time_match,aver_time_solve,t3-t1,t5-t3,aver_time_consu,aver_time_icp, aver_time_const_H_time); ext_euler = SO3ToEuler(state_point.offset_R_L_I); fout_out << setw(20) << Measures.lidar_beg_time - first_lidar_time << " " << euler_cur.transpose() << " " << state_point.pos.transpose()<< " " << ext_euler.transpose() << " "<points.size()<size() > 0 && pcd_save_en) { string file_name = string("scans.pcd"); string all_points_dir(string(string(ROOT_DIR) + "PCD/") + file_name); pcl::PCDWriter pcd_writer; cout << "current scan saved to /PCD/" << file_name< t, s_vec, s_vec2, s_vec3, s_vec4, s_vec5, s_vec6, s_vec7; FILE *fp2; string log_dir = root_dir + "/Log/fast_lio_time_log.csv"; fp2 = fopen(log_dir.c_str(),"w"); fprintf(fp2,"time_stamp, total time, scan point size, incremental time, search time, delete size, delete time, tree size st, tree size end, add point size, preprocess time\n"); for (int i = 0;i