Compare commits

...

11 Commits

Author SHA1 Message Date
邱棚 db492f0498 feat: Add enumerations and comments for lidar processing structures 2025-03-25 12:03:44 +08:00
Fangcheng Zhu 7cc4175de6
Support MARSIM simulator. 2024-07-23 19:22:17 +08:00
zfc-zfc 34b50d95da Support MARSIM simulator. 2024-07-23 19:18:04 +08:00
xuankuzcr 5032d7c53f Update related work. 2024-07-10 16:33:47 +08:00
kennyS99 5d9dc72523
Update README.md
Updated the docker container user manual
2023-10-19 20:06:11 +08:00
Yixi Cai fcde265266
Update NCLT dataset 2023-10-12 14:43:58 +08:00
Yixi Cai c890254b3b
Update Avia Dataset Links 2023-10-11 15:28:52 +08:00
zfc-zfc 478d436813 Add launch file for mid360. 2023-08-18 16:23:52 +08:00
Fangcheng Zhu 2925fef1bf
Update README.md 2023-07-15 15:02:06 +08:00
Yixi Cai 0dbfc6e1cb
Merge pull request #236 from maoxiang1991/main
fix bug: blind param not work
2023-04-10 16:52:03 +08:00
maoxiang1991 fa4cf3429d
fix bug: blind param not work 2023-04-10 15:09:17 +08:00
9 changed files with 318 additions and 76 deletions

View File

@ -6,6 +6,7 @@
2. [R2LIVE](https://github.com/hku-mars/r2live): A high-precision LiDAR-inertial-Vision fusion work using FAST-LIO as LiDAR-inertial front-end.
3. [LI_Init](https://github.com/hku-mars/LiDAR_IMU_Init): A robust, real-time LiDAR-IMU extrinsic initialization and synchronization package..
4. [FAST-LIO-LOCALIZATION](https://github.com/HViktorTsoi/FAST_LIO_LOCALIZATION): The integration of FAST-LIO with **Re-localization** function module.
5. [FAST-LIVO](https://github.com/hku-mars/FAST-LIVO) | [FAST-LIVO2](https://github.com/hku-mars/FAST-LIVO2): A state-of-art LiDAR-inertial-visual odometry (LIVO) system with high computational efficiency, robustness, and pixel-level accuracy.
**Control and Plan:**
@ -77,10 +78,62 @@ Follow [livox_ros_driver Installation](https://github.com/Livox-SDK/livox_ros_dr
*Remarks:*
- Since the FAST-LIO must support Livox serials LiDAR firstly, so the **livox_ros_driver** must be installed and **sourced** before run any FAST-LIO luanch file.
- How to source? The easiest way is add the line ``` source $Licox_ros_driver_dir$/devel/setup.bash ``` to the end of file ``` ~/.bashrc ```, where ``` $Licox_ros_driver_dir$ ``` is the directory of the livox ros driver workspace (should be the ``` ws_livox ``` directory if you completely followed the livox official document).
- How to source? The easiest way is add the line ``` source $Livox_ros_driver_dir$/devel/setup.bash ``` to the end of file ``` ~/.bashrc ```, where ``` $Livox_ros_driver_dir$ ``` is the directory of the livox ros driver workspace (should be the ``` ws_livox ``` directory if you completely followed the livox official document).
## 2. Build
If you want to use docker conatiner to run fastlio2, please install the docker on you machine.
Follow [Docker Installation](https://docs.docker.com/engine/install/ubuntu/).
### 2.1 Docker Container
User can create a new script with anyname by the following command in linux:
```
touch <your_custom_name>.sh
```
Place the following code inside the ``` <your_custom_name>.sh ``` script.
```
#!/bin/bash
mkdir docker_ws
# Script to run ROS Kinetic with GUI support in Docker
# Allow X server to be accessed from the local machine
xhost +local:
# Container name
CONTAINER_NAME="fastlio2"
# Run the Docker container
docker run -itd \
--name=$CONTAINER_NAME \
--user mars_ugv \
--network host \
--ipc=host \
-v /home/$USER/docker_ws:/home/mars_ugv/docker_ws \
--privileged \
--env="QT_X11_NO_MITSHM=1" \
--volume="/etc/localtime:/etc/localtime:ro" \
-v /dev/bus/usb:/dev/bus/usb \
--device=/dev/dri \
--group-add video \
-v /tmp/.X11-unix:/tmp/.X11-unix \
--env="DISPLAY=$DISPLAY" \
kenny0407/marslab_fastlio2:latest \
/bin/bash
```
execute the following command to grant execute permissions to the script, making it runnable:
```
sudo chmod +x <your_custom_name>.sh
```
execute the following command to download the image and create the container.
```
./<your_custom_name>.sh
```
*Script explanation:*
- The docker run command provided below creates a container with a tag, using an image from Docker Hub. The download duration for this image can differ depending on the user's network speed.
- This command also establishes a new workspace called ``` docker_ws ```, which serves as a shared folder between the Docker container and the host machine. This means that if users wish to run the rosbag example, they need to download the rosbag file and place it in the ``` docker_ws ``` directory on their host machine.
- Subsequently, a folder with the same name inside the Docker container will receive this file. Users can then easily play the file within Docker.
- In this example, we've shared the network of the host machine with the Docker container. Consequently, if users execute the ``` rostopic list ``` command, they will observe identical output whether they run it on the host machine or inside the Docker container."
### 2.2 Build from source
Clone the repository and catkin_make:
```
@ -102,7 +155,7 @@ A. Please make sure the IMU and LiDAR are **Synchronized**, that's important.
B. The warning message "Failed to find match for field 'time'." means the timestamps of each LiDAR points are missed in the rosbag file. That is important for the forward propagation and backwark propagation.
C. We recommend to set the **extrinsic_est_en** to false if the extrinsic is give. As for the extrinsic initiallization, please refer to our recent work: [**Robust and Online LiDAR-inertial Initialization**](https://arxiv.org/abs/2202.11006).
C. We recommend to set the **extrinsic_est_en** to false if the extrinsic is give. As for the extrinsic initiallization, please refer to our recent work: [**Robust Real-time LiDAR-inertial Initialization**](https://github.com/hku-mars/LiDAR_IMU_Init).
### 3.1 For Avia
Connect to your PC to Livox Avia LiDAR by following [Livox-ros-driver installation](https://github.com/Livox-SDK/livox_ros_driver), then
@ -151,7 +204,22 @@ Step B: Run below
Step C: Run LiDAR's ros driver or play rosbag.
### 3.4 PCD file save
### 3.4 For MARSIM Simulator
Install MARSIM: https://github.com/hku-mars/MARSIM and run MARSIM as below
```
cd ~/$MARSIM_ROS_DIR$
roslaunch test_interface single_drone_avia.launch
```
Then Run FAST-LIO:
```
roslaunch fast_lio mapping_marsim.launch
```
### 3.5 PCD file save
Set ``` pcd_save_enable ``` in launchfile to ``` 1 ```. All the scans (in global frame) will be accumulated and saved to the file ``` FAST_LIO/PCD/scans.pcd ``` after the FAST-LIO is terminated. ```pcl_viewer scans.pcd``` can visualize the point clouds.
@ -171,7 +239,7 @@ Set ``` pcd_save_enable ``` in launchfile to ``` 1 ```. All the scans (in global
<img src="doc/results/HKU_LG_Indoor.png" width=47% />
<img src="doc/results/HKU_MB_002.png" width = 51% >
Files: Can be downloaded from [google drive](https://drive.google.com/drive/folders/1YL5MQVYgAM8oAWUm7e3OGXZBPKkanmY1?usp=sharing)
Files: Can be downloaded from [google drive](https://drive.google.com/drive/folders/1CGYEJ9-wWjr8INyan6q1BZz_5VtGB-fP?usp=sharing)
Run:
```
@ -184,7 +252,7 @@ rosbag play YOUR_DOWNLOADED.bag
**NCLT Dataset**: Original bin file can be found [here](http://robots.engin.umich.edu/nclt/).
We produce [Rosbag Files](https://drive.google.com/drive/folders/1VBK5idI1oyW0GC_I_Hxh63aqam3nocNK?usp=sharing) and [a python script](https://drive.google.com/file/d/1leh7DxbHx29DyS1NJkvEfeNJoccxH7XM/view) to generate Rosbag files: ```python3 sensordata_to_rosbag_fastlio.py bin_file_dir bag_name.bag```
We produce [Rosbag Files](https://drive.google.com/drive/folders/1blQJuAB4S80NwZmpM6oALyHWvBljPSOE?usp=sharing) and [a python script](https://drive.google.com/file/d/1QC9IRBv2_-cgo_AEvL62E1ml1IL9ht6J/view?usp=sharing) to generate Rosbag files: ```python3 sensordata_to_rosbag_fastlio.py bin_file_dir bag_name.bag```
Run:
```

35
config/marsim.yaml Normal file
View File

@ -0,0 +1,35 @@
common:
lid_topic: "/quad0_pcl_render_node/sensor_cloud"
imu_topic: "/quad_0/imu"
time_sync_en: false # ONLY turn on when external time synchronization is really not possible
time_offset_lidar_to_imu: 0.0 # Time offset between lidar and IMU calibrated by other algorithms, e.g. LI-Init (can be found in README).
# This param will take effect no matter what time_sync_en is. So if the time offset is not known exactly, please set as 0.0
preprocess:
lidar_type: 4 # 1 for Livox serials LiDAR, 2 for Velodyne LiDAR, 3 for ouster LiDAR,
scan_line: 4
blind: 0.5
mapping:
acc_cov: 0.1
gyr_cov: 0.1
b_acc_cov: 0.0001
b_gyr_cov: 0.0001
fov_degree: 90
det_range: 50.0
extrinsic_est_en: false # true: enable the online estimation of IMU-LiDAR extrinsic
extrinsic_T: [ -0.0, -0.0, 0.0 ]
extrinsic_R: [ 1, 0, 0,
0, 1, 0,
0, 0, 1]
publish:
path_en: false
scan_publish_en: true # false: close all the point cloud output
dense_publish_en: true # false: low down the points number in a global-frame point clouds scan.
scan_bodyframe_pub_en: true # true: output the point cloud scans in IMU-body-frame
pcd_save:
pcd_save_en: true
interval: -1 # how many LiDAR frames saved in each pcd file;
# -1 : all frames will be saved in ONE pcd file, may lead to memory crash when having too much frames.

35
config/mid360.yaml Normal file
View File

@ -0,0 +1,35 @@
common:
lid_topic: "/livox/lidar"
imu_topic: "/livox/imu"
time_sync_en: false # ONLY turn on when external time synchronization is really not possible
time_offset_lidar_to_imu: 0.0 # Time offset between lidar and IMU calibrated by other algorithms, e.g. LI-Init (can be found in README).
# This param will take effect no matter what time_sync_en is. So if the time offset is not known exactly, please set as 0.0
preprocess:
lidar_type: 1 # 1 for Livox serials LiDAR, 2 for Velodyne LiDAR, 3 for ouster LiDAR,
scan_line: 4
blind: 0.5
mapping:
acc_cov: 0.1
gyr_cov: 0.1
b_acc_cov: 0.0001
b_gyr_cov: 0.0001
fov_degree: 360
det_range: 100.0
extrinsic_est_en: false # true: enable the online estimation of IMU-LiDAR extrinsic
extrinsic_T: [ -0.011, -0.02329, 0.04412 ]
extrinsic_R: [ 1, 0, 0,
0, 1, 0,
0, 0, 1]
publish:
path_en: false
scan_publish_en: true # false: close all the point cloud output
dense_publish_en: true # false: low down the points number in a global-frame point clouds scan.
scan_bodyframe_pub_en: true # true: output the point cloud scans in IMU-body-frame
pcd_save:
pcd_save_en: true
interval: -1 # how many LiDAR frames saved in each pcd file;
# -1 : all frames will be saved in ONE pcd file, may lead to memory crash when having too much frames.

View File

@ -0,0 +1,21 @@
<launch>
<!-- Launch file for Livox AVIA LiDAR -->
<arg name="rviz" default="true" />
<rosparam command="load" file="$(find fast_lio)/config/marsim.yaml" />
<param name="feature_extract_enable" type="bool" value="0"/>
<param name="point_filter_num" type="int" value="3"/>
<param name="max_iteration" type="int" value="3" />
<param name="filter_size_surf" type="double" value="0.2" />
<param name="filter_size_map" type="double" value="0.3" />
<param name="cube_side_length" type="double" value="1000" />
<param name="runtime_pos_log_enable" type="bool" value="0" />
<node pkg="fast_lio" type="fastlio_mapping" name="laserMapping" output="screen" />
<group if="$(arg rviz)">
<node launch-prefix="nice" pkg="rviz" type="rviz" name="rviz" args="-d $(find fast_lio)/rviz_cfg/loam_livox.rviz" />
</group>
</launch>

View File

@ -0,0 +1,21 @@
<launch>
<!-- Launch file for Livox MID360 LiDAR -->
<arg name="rviz" default="true" />
<rosparam command="load" file="$(find fast_lio)/config/mid360.yaml" />
<param name="feature_extract_enable" type="bool" value="0"/>
<param name="point_filter_num" type="int" value="3"/>
<param name="max_iteration" type="int" value="3" />
<param name="filter_size_surf" type="double" value="0.5" />
<param name="filter_size_map" type="double" value="0.5" />
<param name="cube_side_length" type="double" value="1000" />
<param name="runtime_pos_log_enable" type="bool" value="0" />
<node pkg="fast_lio" type="fastlio_mapping" name="laserMapping" output="screen" />
<group if="$(arg rviz)">
<node launch-prefix="nice" pkg="rviz" type="rviz" name="rviz" args="-d $(find fast_lio)/rviz_cfg/loam_livox.rviz" />
</group>
</launch>

View File

@ -23,6 +23,7 @@
#include <sensor_msgs/PointCloud2.h>
#include <geometry_msgs/Vector3.h>
#include "use-ikfom.hpp"
#include "preprocess.h"
/// *************Preconfiguration
@ -59,6 +60,7 @@ class ImuProcess
V3D cov_bias_gyr;
V3D cov_bias_acc;
double first_lidar_time;
int lidar_type;
private:
void IMU_init(const MeasureGroup &meas, esekfom::esekf<state_ikfom, 12, input_ikfom> &kf_state, int &N);
@ -218,10 +220,16 @@ void ImuProcess::UndistortPcl(const MeasureGroup &meas, esekfom::esekf<state_ikf
v_imu.push_front(last_imu_);
const double &imu_beg_time = v_imu.front()->header.stamp.toSec();
const double &imu_end_time = v_imu.back()->header.stamp.toSec();
const double &pcl_beg_time = meas.lidar_beg_time;
const double &pcl_end_time = meas.lidar_end_time;
/*** sort point clouds by offset time ***/
double pcl_beg_time = meas.lidar_beg_time;
double pcl_end_time = meas.lidar_end_time;
if (lidar_type == MARSIM) {
pcl_beg_time = last_lidar_end_time_;
pcl_end_time = meas.lidar_beg_time;
}
/*** sort point clouds by offset time ***/
pcl_out = *(meas.lidar);
sort(pcl_out.points.begin(), pcl_out.points.end(), time_list);
// cout<<"[ IMU Process ]: Process lidar from "<<pcl_beg_time<<" to "<<pcl_end_time<<", " \
@ -298,39 +306,42 @@ void ImuProcess::UndistortPcl(const MeasureGroup &meas, esekfom::esekf<state_ikf
/*** undistort each lidar point (backward propagation) ***/
if (pcl_out.points.begin() == pcl_out.points.end()) return;
auto it_pcl = pcl_out.points.end() - 1;
for (auto it_kp = IMUpose.end() - 1; it_kp != IMUpose.begin(); it_kp--)
{
auto head = it_kp - 1;
auto tail = it_kp;
R_imu<<MAT_FROM_ARRAY(head->rot);
// cout<<"head imu acc: "<<acc_imu.transpose()<<endl;
vel_imu<<VEC_FROM_ARRAY(head->vel);
pos_imu<<VEC_FROM_ARRAY(head->pos);
acc_imu<<VEC_FROM_ARRAY(tail->acc);
angvel_avr<<VEC_FROM_ARRAY(tail->gyr);
for(; it_pcl->curvature / double(1000) > head->offset_time; it_pcl --)
{
dt = it_pcl->curvature / double(1000) - head->offset_time;
if(lidar_type != MARSIM){
auto it_pcl = pcl_out.points.end() - 1;
for (auto it_kp = IMUpose.end() - 1; it_kp != IMUpose.begin(); it_kp--)
{
auto head = it_kp - 1;
auto tail = it_kp;
R_imu<<MAT_FROM_ARRAY(head->rot);
// cout<<"head imu acc: "<<acc_imu.transpose()<<endl;
vel_imu<<VEC_FROM_ARRAY(head->vel);
pos_imu<<VEC_FROM_ARRAY(head->pos);
acc_imu<<VEC_FROM_ARRAY(tail->acc);
angvel_avr<<VEC_FROM_ARRAY(tail->gyr);
/* Transform to the 'end' frame, using only the rotation
* Note: Compensation direction is INVERSE of Frame's moving direction
* So if we want to compensate a point at timestamp-i to the frame-e
* P_compensate = R_imu_e ^ T * (R_i * P_i + T_ei) where T_ei is represented in global frame */
M3D R_i(R_imu * Exp(angvel_avr, dt));
for(; it_pcl->curvature / double(1000) > head->offset_time; it_pcl --)
{
dt = it_pcl->curvature / double(1000) - head->offset_time;
V3D P_i(it_pcl->x, it_pcl->y, it_pcl->z);
V3D T_ei(pos_imu + vel_imu * dt + 0.5 * acc_imu * dt * dt - imu_state.pos);
V3D P_compensate = imu_state.offset_R_L_I.conjugate() * (imu_state.rot.conjugate() * (R_i * (imu_state.offset_R_L_I * P_i + imu_state.offset_T_L_I) + T_ei) - imu_state.offset_T_L_I);// not accurate!
/* Transform to the 'end' frame, using only the rotation
* Note: Compensation direction is INVERSE of Frame's moving direction
* So if we want to compensate a point at timestamp-i to the frame-e
* P_compensate = R_imu_e ^ T * (R_i * P_i + T_ei) where T_ei is represented in global frame */
M3D R_i(R_imu * Exp(angvel_avr, dt));
// save Undistorted points and their rotation
it_pcl->x = P_compensate(0);
it_pcl->y = P_compensate(1);
it_pcl->z = P_compensate(2);
V3D P_i(it_pcl->x, it_pcl->y, it_pcl->z);
V3D T_ei(pos_imu + vel_imu * dt + 0.5 * acc_imu * dt * dt - imu_state.pos);
V3D P_compensate = imu_state.offset_R_L_I.conjugate() * (imu_state.rot.conjugate() * (R_i * (imu_state.offset_R_L_I * P_i + imu_state.offset_T_L_I) + T_ei) - imu_state.offset_T_L_I);// not accurate!
if (it_pcl == pcl_out.points.begin()) break;
}
// save Undistorted points and their rotation
it_pcl->x = P_compensate(0);
it_pcl->y = P_compensate(1);
it_pcl->z = P_compensate(2);
if (it_pcl == pcl_out.points.begin()) break;
}
}
}
}

View File

@ -94,6 +94,7 @@ int iterCount = 0, feats_down_size = 0, NUM_MAX_ITERATIONS = 0, laserCloudVal
bool point_selected_surf[100000] = {0};
bool lidar_pushed, flg_first_scan = true, flg_exit = false, flg_EKF_inited;
bool scan_pub_en = false, dense_pub_en = false, scan_body_pub_en = false;
int lidar_type;
vector<vector<int>> pointSearchInd_surf;
vector<BoxPointType> cub_needrm;
@ -375,6 +376,8 @@ bool sync_packages(MeasureGroup &meas)
{
meas.lidar = lidar_buffer.front();
meas.lidar_beg_time = time_buffer.front();
if (meas.lidar->points.size() <= 1) // time too little
{
lidar_end_time = meas.lidar_beg_time + lidar_mean_scantime;
@ -390,6 +393,8 @@ bool sync_packages(MeasureGroup &meas)
lidar_end_time = meas.lidar_beg_time + meas.lidar->points.back().curvature / double(1000);
lidar_mean_scantime += (meas.lidar->points.back().curvature / double(1000) - lidar_mean_scantime) / scan_num;
}
if(lidar_type == MARSIM)
lidar_end_time = meas.lidar_beg_time;
meas.lidar_end_time = lidar_end_time;
@ -774,7 +779,7 @@ int main(int argc, char** argv)
nh.param<double>("mapping/b_gyr_cov",b_gyr_cov,0.0001);
nh.param<double>("mapping/b_acc_cov",b_acc_cov,0.0001);
nh.param<double>("preprocess/blind", p_pre->blind, 0.01);
nh.param<int>("preprocess/lidar_type", p_pre->lidar_type, AVIA);
nh.param<int>("preprocess/lidar_type", lidar_type, AVIA);
nh.param<int>("preprocess/scan_line", p_pre->N_SCANS, 16);
nh.param<int>("preprocess/timestamp_unit", p_pre->time_unit, US);
nh.param<int>("preprocess/scan_rate", p_pre->SCAN_RATE, 10);
@ -786,6 +791,8 @@ int main(int argc, char** argv)
nh.param<int>("pcd_save/interval", pcd_save_interval, -1);
nh.param<vector<double>>("mapping/extrinsic_T", extrinT, vector<double>());
nh.param<vector<double>>("mapping/extrinsic_R", extrinR, vector<double>());
p_pre->lidar_type = lidar_type;
cout<<"p_pre->lidar_type "<<p_pre->lidar_type<<endl;
path.header.stamp = ros::Time::now();
@ -815,7 +822,7 @@ int main(int argc, char** argv)
p_imu->set_acc_cov(V3D(acc_cov, acc_cov, acc_cov));
p_imu->set_gyr_bias_cov(V3D(b_gyr_cov, b_gyr_cov, b_gyr_cov));
p_imu->set_acc_bias_cov(V3D(b_acc_cov, b_acc_cov, b_acc_cov));
p_imu->lidar_type = lidar_type;
double epsi[23] = {0.001};
fill(epsi, epsi+23, 0.001);
kf.init_dyn_share(get_f, df_dx, df_dw, h_share_model, NUM_MAX_ITERATIONS, epsi);

View File

@ -78,6 +78,10 @@ void Preprocess::process(const sensor_msgs::PointCloud2::ConstPtr &msg, PointClo
velodyne_handler(msg);
break;
case MARSIM:
sim_handler(msg);
break;
default:
printf("Error LiDAR Type");
break;
@ -169,9 +173,9 @@ void Preprocess::avia_handler(const livox_ros_driver::CustomMsg::ConstPtr &msg)
pl_full[i].intensity = msg->points[i].reflectivity;
pl_full[i].curvature = msg->points[i].offset_time / float(1000000); // use curvature as time of each laser points, curvature unit: ms
if((abs(pl_full[i].x - pl_full[i-1].x) > 1e-7)
if(((abs(pl_full[i].x - pl_full[i-1].x) > 1e-7)
|| (abs(pl_full[i].y - pl_full[i-1].y) > 1e-7)
|| (abs(pl_full[i].z - pl_full[i-1].z) > 1e-7)
|| (abs(pl_full[i].z - pl_full[i-1].z) > 1e-7))
&& (pl_full[i].x * pl_full[i].x + pl_full[i].y * pl_full[i].y + pl_full[i].z * pl_full[i].z > (blind * blind)))
{
pl_surf.push_back(pl_full[i]);
@ -451,6 +455,31 @@ void Preprocess::velodyne_handler(const sensor_msgs::PointCloud2::ConstPtr &msg)
}
}
void Preprocess::sim_handler(const sensor_msgs::PointCloud2::ConstPtr &msg) {
pl_surf.clear();
pl_full.clear();
pcl::PointCloud<pcl::PointXYZI> pl_orig;
pcl::fromROSMsg(*msg, pl_orig);
int plsize = pl_orig.size();
pl_surf.reserve(plsize);
for (int i = 0; i < pl_orig.points.size(); i++) {
double range = pl_orig.points[i].x * pl_orig.points[i].x + pl_orig.points[i].y * pl_orig.points[i].y +
pl_orig.points[i].z * pl_orig.points[i].z;
if (range < blind * blind) continue;
Eigen::Vector3d pt_vec;
PointType added_pt;
added_pt.x = pl_orig.points[i].x;
added_pt.y = pl_orig.points[i].y;
added_pt.z = pl_orig.points[i].z;
added_pt.intensity = pl_orig.points[i].intensity;
added_pt.normal_x = 0;
added_pt.normal_y = 0;
added_pt.normal_z = 0;
added_pt.curvature = 0.0;
pl_surf.points.push_back(added_pt);
}
}
void Preprocess::give_feature(pcl::PointCloud<PointType> &pl, vector<orgtype> &types)
{
int plsize = pl.size();

View File

@ -1,3 +1,7 @@
#ifndef PREPROCESS_H
#define PREPROCESS_H
#include <ros/ros.h>
#include <pcl_conversions/pcl_conversions.h>
#include <sensor_msgs/PointCloud2.h>
@ -10,20 +14,26 @@ using namespace std;
typedef pcl::PointXYZINormal PointType;
typedef pcl::PointCloud<PointType> PointCloudXYZI;
enum LID_TYPE{AVIA = 1, VELO16, OUST64}; //{1, 2, 3}
// 激光雷达类型枚举
enum LID_TYPE{AVIA = 1, VELO16, OUST64, MARSIM}; //{1, 2, 3}
// 时间单位枚举
enum TIME_UNIT{SEC = 0, MS = 1, US = 2, NS = 3};
// 特征类型枚举
enum Feature{Nor, Poss_Plane, Real_Plane, Edge_Jump, Edge_Plane, Wire, ZeroPoint};
// 周围点枚举
enum Surround{Prev, Next};
// 边缘跳跃类型枚举
enum E_jump{Nr_nor, Nr_zero, Nr_180, Nr_inf, Nr_blind};
// 原始类型结构体
struct orgtype
{
double range;
double dista;
double angle[2];
double intersect;
E_jump edj[2];
Feature ftype;
double range; // 距离
double dista; // 距离差
double angle[2]; // 角度
double intersect; // 交点
E_jump edj[2]; // 边缘跳跃类型
Feature ftype; // 特征类型
orgtype()
{
range = 0;
@ -37,9 +47,9 @@ struct orgtype
namespace velodyne_ros {
struct EIGEN_ALIGN16 Point {
PCL_ADD_POINT4D;
float intensity;
float time;
uint16_t ring;
float intensity; // 强度
float time; // 时间
uint16_t ring; // 环
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
} // namespace velodyne_ros
@ -55,12 +65,12 @@ POINT_CLOUD_REGISTER_POINT_STRUCT(velodyne_ros::Point,
namespace ouster_ros {
struct EIGEN_ALIGN16 Point {
PCL_ADD_POINT4D;
float intensity;
uint32_t t;
uint16_t reflectivity;
uint8_t ring;
uint16_t ambient;
uint32_t range;
float intensity; // 强度
uint32_t t; // 时间
uint16_t reflectivity; // 反射率
uint8_t ring; // 环
uint16_t ambient; // 环境光
uint32_t range; // 距离
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
} // namespace ouster_ros
@ -87,38 +97,43 @@ class Preprocess
Preprocess();
~Preprocess();
// 处理函数
void process(const livox_ros_driver::CustomMsg::ConstPtr &msg, PointCloudXYZI::Ptr &pcl_out);
void process(const sensor_msgs::PointCloud2::ConstPtr &msg, PointCloudXYZI::Ptr &pcl_out);
void set(bool feat_en, int lid_type, double bld, int pfilt_num);
// sensor_msgs::PointCloud2::ConstPtr pointcloud;
// 点云数据
PointCloudXYZI pl_full, pl_corn, pl_surf;
PointCloudXYZI pl_buff[128]; //maximum 128 line lidar
vector<orgtype> typess[128]; //maximum 128 line lidar
float time_unit_scale;
int lidar_type, point_filter_num, N_SCANS, SCAN_RATE, time_unit;
double blind;
bool feature_enabled, given_offset_time;
ros::Publisher pub_full, pub_surf, pub_corn;
PointCloudXYZI pl_buff[128]; // 最大128线激光雷达
vector<orgtype> typess[128]; // 最大128线激光雷达
float time_unit_scale; // 时间单位比例
int lidar_type, point_filter_num, N_SCANS, SCAN_RATE, time_unit; // 激光雷达类型、点过滤数量、扫描次数、扫描速率、时间单位
double blind; // 盲区
bool feature_enabled, given_offset_time; // 特征使能、给定偏移时间
ros::Publisher pub_full, pub_surf, pub_corn; // 发布器
private:
// 处理函数
void avia_handler(const livox_ros_driver::CustomMsg::ConstPtr &msg);
void oust64_handler(const sensor_msgs::PointCloud2::ConstPtr &msg);
void velodyne_handler(const sensor_msgs::PointCloud2::ConstPtr &msg);
void sim_handler(const sensor_msgs::PointCloud2::ConstPtr &msg);
void give_feature(PointCloudXYZI &pl, vector<orgtype> &types);
void pub_func(PointCloudXYZI &pl, const ros::Time &ct);
int plane_judge(const PointCloudXYZI &pl, vector<orgtype> &types, uint i, uint &i_nex, Eigen::Vector3d &curr_direct);
bool small_plane(const PointCloudXYZI &pl, vector<orgtype> &types, uint i_cur, uint &i_nex, Eigen::Vector3d &curr_direct);
bool edge_jump_judge(const PointCloudXYZI &pl, vector<orgtype> &types, uint i, Surround nor_dir);
int group_size;
double disA, disB, inf_bound;
double limit_maxmid, limit_midmin, limit_maxmin;
double p2l_ratio;
double jump_up_limit, jump_down_limit;
double cos160;
double edgea, edgeb;
double smallp_intersect, smallp_ratio;
double vx, vy, vz;
int group_size; // 组大小
double disA, disB, inf_bound; // 距离参数、无穷边界
double limit_maxmid, limit_midmin, limit_maxmin; // 限制参数
double p2l_ratio; // 比例
double jump_up_limit, jump_down_limit; // 跳跃限制
double cos160; // 余弦值
double edgea, edgeb; // 边缘参数
double smallp_intersect, smallp_ratio; // 小平面参数
double vx, vy, vz; // 向量
};
#endif