From c05f2ad77db9dcc5ea8b7d589d08b194667946e1 Mon Sep 17 00:00:00 2001 From: xw Date: Wed, 7 Jul 2021 00:45:19 -0400 Subject: [PATCH] add overview and scan context introduce --- CMakeLists.txt | 11 +- README.md | 25 +- doc/overview_fastlio2.svg | 3318 +++++++++++++++++++++++++++++++++++++ 3 files changed, 3336 insertions(+), 18 deletions(-) create mode 100644 doc/overview_fastlio2.svg diff --git a/CMakeLists.txt b/CMakeLists.txt index 2bd67d3..5f91a33 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -20,15 +20,14 @@ if(CMAKE_SYSTEM_PROCESSOR MATCHES "(x86)|(X86)|(amd64)|(AMD64)" ) include(ProcessorCount) ProcessorCount(N) message("Processer number: ${N}") - if(N GREATER 5) + if(N GREATER 4) add_definitions(-DMP_EN) - add_definitions(-DMP_PROC_NUM=4) - message("core for MP: 3") + add_definitions(-DMP_PROC_NUM=3) + message("core for MP: 3") elseif(N GREATER 3) - math(EXPR PROC_NUM "${N} - 2") add_definitions(-DMP_EN) - add_definitions(-DMP_PROC_NUM="${PROC_NUM}") - message("core for MP: ${PROC_NUM}") + add_definitions(-DMP_PROC_NUM=2) + message("core for MP: 2") else() add_definitions(-DMP_PROC_NUM=1) endif() diff --git a/README.md b/README.md index f54bb0f..b8909c4 100644 --- a/README.md +++ b/README.md @@ -5,6 +5,7 @@ 3. [UAV Avoiding Dynamic Obstacles](https://github.com/hku-mars/dyn_small_obs_avoidance): One of the implementation of FAST-LIO in robot's planning. 4. [R2LIVE](https://github.com/hku-mars/r2live): A high-precision LiDAR-inertial-Vision fusion work using FAST-LIO as LiDAR-inertial front-end. 5. [UGV Demo](https://www.youtube.com/watch?v=wikgrQbE6Cs): Model Predictive Control for Trajectory Tracking on Differentiable Manifolds. +6. [SC-A-LOAM](https://github.com/gisbi-kim/SC-A-LOAM#for-livox-lidar): A scan-context loop closure module that can directly work with FAST-LIO1 (The support for FAST-LIO2 is under developing). ## FAST-LIO **FAST-LIO** (Fast LiDAR-Inertial Odometry) is a computationally efficient and robust LiDAR-inertial odometry package. It fuses LiDAR feature points with IMU data using a tightly-coupled iterated extended Kalman filter to allow robust navigation in fast-motion, noisy or cluttered environments where degeneration occurs. Our package address many key issues: @@ -16,34 +17,34 @@
- - + +
-**Related video:** +**Related video:** [FAST-LIO2](https://youtu.be/2OvjGnxszf8), [FAST-LIO1](https://youtu.be/iYCY6T79oNU), [FAST-LIO1 + Scan-context loop closure](https://youtu.be/Fw9S6D6HozA) -[FAST-LIO2](https://youtu.be/2OvjGnxszf8) +**Pipeline:** +
+ +
-[FAST-LIO1](https://youtu.be/iYCY6T79oNU) - -**New features:** +**New Features:** 1. Incremental mapping using ikd-Tree, achieve faster speed and over 100Hz LiDAR rate. 2. Direct odometry on Raw LiDAR points (feature extraction can be closed), achieving better accuracy. 3. Since no need for feature extraction, FAST-LIO2 can support different LiDAR Types including spinning (Velodyne, Ouster) and solid-state (Avia, horizon) LiDARs, and can be easily extended to support more LiDAR. 4. Support external IMU. 5. Support ARM-based platforms including Khadas VIM3, Nivida TX2, Raspberry 4B with 8G RAM. - -**Contributors** - -[Wei Xu 徐威](https://github.com/XW-HKU),[Yixi Cai 蔡逸熙](https://github.com/Ecstasy-EC),[Dongjiao He 贺东娇](https://github.com/Joanna-HE),[Fangcheng Zhu 朱方程](https://github.com/zfc-zfc),[Jiarong Lin 林家荣](https://github.com/ziv-lin),[Zheng Liu 刘政](https://github.com/Zale-Liu), [Borong Yuan](https://github.com/borongyuan) - **Related papers**: [FAST-LIO2: Fast Direct LiDAR-inertial Odometry](doc/Fast_LIO_2.pdf) [FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter](https://arxiv.org/abs/2010.08196) +**Contributors** + +[Wei Xu 徐威](https://github.com/XW-HKU),[Yixi Cai 蔡逸熙](https://github.com/Ecstasy-EC),[Dongjiao He 贺东娇](https://github.com/Joanna-HE),[Fangcheng Zhu 朱方程](https://github.com/zfc-zfc),[Jiarong Lin 林家荣](https://github.com/ziv-lin),[Zheng Liu 刘政](https://github.com/Zale-Liu), [Borong Yuan](https://github.com/borongyuan) +