diff --git a/README.md b/README.md
index fa004e8..5bd5ccd 100644
--- a/README.md
+++ b/README.md
@@ -1,12 +1,19 @@
**Noted: Ubuntu 16.04 and lower is not supported**
+## Related Works
+
+1. [ikd-Tree](https://github.com/hku-mars/ikd-Tree): A state-of-art dynamic KD-Tree for 3D kNN search.
+2. [IKFOM](https://github.com/hku-mars/IKFoM): A Toolbox for fast and high-precision on-manifold Kalman filter.
+3. [UAV Avoiding Dynamic Obstacles](https://github.com/hku-mars/dyn_small_obs_avoidance): One of the implementation of FAST-LIO in robot's planning.
+4. [R2LIVE](https://github.com/hku-mars/dyn_small_obs_avoidance): A high-precision LiDAR-inertial-Vision fusion work using FAST-LIO as LiDAR-inertial front-end.
+
## FAST-LIO
**FAST-LIO** (Fast LiDAR-Inertial Odometry) is a computationally efficient and robust LiDAR-inertial odometry package. It fuses LiDAR feature points with IMU data using a tightly-coupled iterated extended Kalman filter to allow robust navigation in fast-motion, noisy or cluttered environments where degeneration occurs. Our package address many key issues:
1. Fast iterated Kalman filter for odometry optimization;
2. Automaticaly initialized at most steady environments;
3. Parallel KD-Tree Search to decrease the computation;
-## FAST-LIO 2.0 (2021-07-04 Update)
+## FAST-LIO 2.0 (2021-07-05 Update)
@@ -23,21 +30,18 @@
**New features:**
1. Incremental mapping using ikd-Tree, achieve faster speed and over 100Hz LiDAR rate.
2. Direct odometry on Raw LiDAR points (feature extraction can be closed), achieving better accuracy.
-3. Since no need for feature extraction, FAST-LIO2 can support different LiDAR Types including spinning (Velodyne, Ouster) and solid-state (Avia, horizon) LiDARs. And most of LiDARs can be easily supported.
+3. Since no need for feature extraction, FAST-LIO2 can support different LiDAR Types including spinning (Velodyne, Ouster) and solid-state (Avia, horizon) LiDARs, and can be easily extended to support more LiDAR.
4. Support external IMU.
5. Support ARM-based platforms including Khadas VIM3, Nivida TX2, Raspberry 4B with 8G RAM.
+
**Contributors**
[Wei Xu 徐威](https://github.com/XW-HKU),[Yixi Cai 蔡逸熙](https://github.com/Ecstasy-EC),[Dongjiao He 贺东娇](https://github.com/Joanna-HE),[Fangcheng Zhu 朱方程](https://github.com/zfc-zfc),[Jiarong Lin 林家荣](https://github.com/ziv-lin),[Zheng Liu 刘政](https://github.com/Zale-Liu)
-To know more about the details, please refer to our related paper:)
-
**Related papers**:
-our related papers are now available on arxiv:
-
-[FAST-LIO2: Fast Direct LiDAR-inertial Odometry (Currently Uavailable)]()
+[FAST-LIO2: Fast Direct LiDAR-inertial Odometry]() (Currently Unavailable)
[FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter](https://arxiv.org/abs/2010.08196)
@@ -51,6 +55,8 @@ our related papers are now available on arxiv:
### 1.1 **Ubuntu** and **ROS**
**Ubuntu >= 18.04 (Ubuntu 16.04 is not supported)**
+For **Ubuntu 18.04 or higher**, the **default** PCL and Eigen is enough for FAST-LIO to work normally.
+
ROS >= Melodic. [ROS Installation](http://wiki.ros.org/ROS/Installation)
### 1.2. **PCL && Eigen && openCV**
@@ -61,33 +67,61 @@ Eigen >= 3.3.4, Follow [Eigen Installation](http://eigen.tuxfamily.org/index.ph
### 1.3. **livox_ros_driver**
Follow [livox_ros_driver Installation](https://github.com/Livox-SDK/livox_ros_driver).
+*Remarks:*
+- Since the FAST-LIO must support Livox serials LiDAR firstly, so the **livox_ros_driver** must be installed and **sourced** before run any FAST-LIO luanch file.
+- How to source? The easiest way is add the line ``` source $Licox_ros_driver_dir$/devel/setup.bash ``` to the end of file ``` ~/.bashrc ```, where ``` $Licox_ros_driver_dir$ ``` is the directory of the livox ros driver workspace (should be the ``` ws_livox ``` directory if you completely followed the livox official document).
+
+
## 2. Build
Clone the repository and catkin_make:
```
- cd ~/catkin_ws/src
- git clone https://github.com/XW-HKU/fast_lio.git
+ cd ~/$A_ROS_DIR$/src
+ git clone https://github.com/hku-mars/FAST_LIO.git
+ cd FAST_LIO
git submodule update --init
- cd ..
+ cd ../..
catkin_make
source devel/setup.bash
```
-*Remarks:*
+- Remember to source the livox_ros_driver before build (follow 1.3 **livox_ros_driver**)
- If you want to use a custom build of PCL, add the following line to ~/.bashrc
```export PCL_ROOT={CUSTOM_PCL_PATH}```
## 3. Directly run
### 3.1 For Avia
Connect to your PC to Livox Avia LiDAR by following [Livox-ros-driver installation](https://github.com/Livox-SDK/livox_ros_driver), then
```
- ....
- cd ~/catkin_ws
+ cd ~/$FAST_LIO_ROS_DIR$
+ source devel/setup.bash
roslaunch fast_lio mapping_avia.launch
roslaunch livox_ros_driver livox_lidar_msg.launch
-
```
-*Remarks:*
- If you want to change the frame rate, please modify the **publish_freq** parameter in the [livox_lidar_msg.launch](https://github.com/Livox-SDK/livox_ros_driver/blob/master/livox_ros_driver/launch/livox_lidar_msg.launch) of [Livox-ros-driver](https://github.com/Livox-SDK/livox_ros_driver) before make the livox_ros_driver pakage.
+### 3.2 For Velodyne or Ouster (using Velodyne as an example)
+
+Step A: Setup before run
+
+Edit ``` FAST-LIO/config/velodyne.yaml ``` to set the below parameters:
+
+1. lidar point cloud topic name: ``` lid_topic ```
+2. IMU topic name: ``` imu_topic ```
+3. Line number (we tested 16 and 32 line, but not tested 64 or above): ``` scan_line ```
+4. Translational extrinsic: ``` extrinsic_T ```
+5. Rotational extrinsic: ``` extrinsic_R ``` (only support rotation matrix)
+- The extrinsic parameters in FAST-LIO is defined as the LiDAR's pose (position and rotation matrix) in IMU body frame (i.e. the IMU is the base frame).
+
+Step B: Run below
+```
+ cd ~/$FAST_LIO_ROS_DIR$
+ source devel/setup.bash
+ roslaunch fast_lio mapping_velodyne.launch
+```
+
+Step C: Run LiDAR's ros driver or play rosbag.
+*Remarks:*
+- We will produce some velodyne datasets which is already transfered to Rosbags, please wait for a while.
+
## 4. Rosbag Example
### 4.1 Indoor rosbag (Livox Avia LiDAR)
@@ -97,7 +131,9 @@ Download [avia_indoor_quick_shake_example1](https://drive.google.com/file/d/1SWm
```
roslaunch fast_lio mapping_avia.launch
rosbag play YOUR_DOWNLOADED.bag
+
```
+
### 4.2 Outdoor rosbag (Livox Avia LiDAR)

@@ -106,17 +142,20 @@ rosbag play YOUR_DOWNLOADED.bag
Download [avia_hku_main building_mapping](https://drive.google.com/file/d/1GSb9eLQuwqmgI3VWSB5ApEUhOCFG_Sv5/view?usp=sharing) and then
```
-roslaunch fast_lio mapping_avia_outdoor.launch
+roslaunch fast_lio mapping_avia.launch
rosbag play YOUR_DOWNLOADED.bag
```
## 5.Implementation on UAV
In order to validate the robustness and computational efficiency of FAST-LIO in actual mobile robots, we build a small-scale quadrotor which can carry a Livox Avia LiDAR with 70 degree FoV and a DJI Manifold 2-C onboard computer with a 1.8 GHz Intel i7-8550U CPU and 8 G RAM, as shown in below.
+The main structure of this UAV is 3d printed (Aluminum or PLA), the .stl file will be open-sourced in the future.
+
## 6.Acknowledgments
-Thanks for LOAM(J. Zhang and S. Singh. LOAM: Lidar Odometry and Mapping in Real-time), [Livox_Mapping](https://github.com/Livox-SDK/livox_mapping) and [Loam_Livox](https://github.com/hku-mars/loam_livox).
+
+Thanks for LOAM(J. Zhang and S. Singh. LOAM: Lidar Odometry and Mapping in Real-time), [Livox_Mapping](https://github.com/Livox-SDK/livox_mapping), [LINS](https://github.com/ChaoqinRobotics/LINS---LiDAR-inertial-SLAM) and [Loam_Livox](https://github.com/hku-mars/loam_livox).
diff --git a/config/velody16.yaml b/config/velodyne.yaml
similarity index 79%
rename from config/velody16.yaml
rename to config/velodyne.yaml
index 5cee477..974fb4e 100644
--- a/config/velody16.yaml
+++ b/config/velodyne.yaml
@@ -14,7 +14,7 @@ mapping:
b_gyr_cov: 0.0001
fov_degree: 180
det_range: 100.0
- extrinsic_T: [ 0, 0, 0.28] #ULHK #[ -0.5, 1.4, 1.5 ] #utbm
+ extrinsic_T: [ 0, 0, 0.28]
extrinsic_R: [ 1, 0, 0,
0, 1, 0,
0, 0, 1]
\ No newline at end of file
diff --git a/launch/gdb_debug_example.launch b/launch/gdb_debug_example.launch
index 5070aa1..d1f86ad 100644
--- a/launch/gdb_debug_example.launch
+++ b/launch/gdb_debug_example.launch
@@ -2,12 +2,6 @@
-
-
-
-
-
-
@@ -17,7 +11,7 @@
-
+
diff --git a/launch/mapping_avia.launch b/launch/mapping_avia.launch
index 2f56ef7..76667ee 100644
--- a/launch/mapping_avia.launch
+++ b/launch/mapping_avia.launch
@@ -12,7 +12,7 @@
-
+
diff --git a/launch/mapping_horizon.launch b/launch/mapping_horizon.launch
index 0d0cd31..e6b2aa9 100644
--- a/launch/mapping_horizon.launch
+++ b/launch/mapping_horizon.launch
@@ -12,7 +12,7 @@
-
+
diff --git a/launch/mapping_velody16.launch b/launch/mapping_velodyne.launch
similarity index 90%
rename from launch/mapping_velody16.launch
rename to launch/mapping_velodyne.launch
index 990a425..f218345 100644
--- a/launch/mapping_velody16.launch
+++ b/launch/mapping_velodyne.launch
@@ -3,7 +3,7 @@
-
+
@@ -12,7 +12,7 @@
-
+