add pcl_viewer tips
parent
c05f2ad77d
commit
8c50d839dc
14
README.md
14
README.md
|
@ -5,7 +5,7 @@
|
|||
3. [UAV Avoiding Dynamic Obstacles](https://github.com/hku-mars/dyn_small_obs_avoidance): One of the implementation of FAST-LIO in robot's planning.
|
||||
4. [R2LIVE](https://github.com/hku-mars/r2live): A high-precision LiDAR-inertial-Vision fusion work using FAST-LIO as LiDAR-inertial front-end.
|
||||
5. [UGV Demo](https://www.youtube.com/watch?v=wikgrQbE6Cs): Model Predictive Control for Trajectory Tracking on Differentiable Manifolds.
|
||||
6. [SC-A-LOAM](https://github.com/gisbi-kim/SC-A-LOAM#for-livox-lidar): A scan-context loop closure module that can directly work with FAST-LIO1 (The support for FAST-LIO2 is under developing).
|
||||
6. [SC-A-LOAM](https://github.com/gisbi-kim/SC-A-LOAM#for-livox-lidar): A [Scan-Context](https://github.com/irapkaist/scancontext) loop closure module that can directly work with FAST-LIO1 (The support for FAST-LIO2 is under developing).
|
||||
|
||||
## FAST-LIO
|
||||
**FAST-LIO** (Fast LiDAR-Inertial Odometry) is a computationally efficient and robust LiDAR-inertial odometry package. It fuses LiDAR feature points with IMU data using a tightly-coupled iterated extended Kalman filter to allow robust navigation in fast-motion, noisy or cluttered environments where degeneration occurs. Our package address many key issues:
|
||||
|
@ -139,7 +139,17 @@ Step C: Run LiDAR's ros driver or play rosbag.
|
|||
|
||||
### 3.4 PCD file save
|
||||
|
||||
Set ``` pcd_save_enable ``` in launchfile to ``` 1 ```. All the scans (in global frame) will be accumulated and saved to the file ``` FAST_LIO/PCD/scans.pcd ``` after the FAST-LIO is terminated.
|
||||
Set ``` pcd_save_enable ``` in launchfile to ``` 1 ```. All the scans (in global frame) will be accumulated and saved to the file ``` FAST_LIO/PCD/scans.pcd ``` after the FAST-LIO is terminated. ```pcl_viewer scans.pcd``` can visualize the point clouds.
|
||||
|
||||
*Tips for pcl_viewer:*
|
||||
- change what to visualize/color by pressing keyboard 1,2,3,4,5 when pcl_viewer is running.
|
||||
```
|
||||
1 is all random
|
||||
2 is X values
|
||||
3 is Y values
|
||||
4 is Z values
|
||||
5 is intensity
|
||||
```
|
||||
|
||||
## 4. Rosbag Example
|
||||
### 4.1 Indoor rosbag (Livox Avia LiDAR)
|
||||
|
|
|
@ -289,6 +289,7 @@ void livox_pcl_cbk(const livox_ros_driver::CustomMsg::ConstPtr &msg)
|
|||
mtx_buffer.lock();
|
||||
scan_count ++;
|
||||
double preprocess_start_time = omp_get_wtime();
|
||||
cout<<"lidar got at: "<<msg->header.stamp.toSec()<<endl;
|
||||
if (msg->header.stamp.toSec() < last_timestamp_lidar)
|
||||
{
|
||||
ROS_ERROR("lidar loop back, clear buffer");
|
||||
|
@ -307,6 +308,7 @@ void livox_pcl_cbk(const livox_ros_driver::CustomMsg::ConstPtr &msg)
|
|||
void imu_cbk(const sensor_msgs::Imu::ConstPtr &msg_in)
|
||||
{
|
||||
publish_count ++;
|
||||
cout<<"IMU got at: "<<msg_in->header.stamp.toSec()<<endl;
|
||||
sensor_msgs::Imu::Ptr msg(new sensor_msgs::Imu(*msg_in));
|
||||
|
||||
double timestamp = msg->header.stamp.toSec();
|
||||
|
@ -347,6 +349,11 @@ bool sync_packages(MeasureGroup &meas)
|
|||
lidar_pushed = true;
|
||||
}
|
||||
|
||||
if (abs(last_timestamp_imu - lidar_end_time) > 10.0)
|
||||
{
|
||||
printf("IMU and LiDAR not Synced, IMU time: %lf, lidar scan end time: %lf",last_timestamp_imu, lidar_end_time);
|
||||
}
|
||||
|
||||
if (last_timestamp_imu < lidar_end_time)
|
||||
{
|
||||
return false;
|
||||
|
@ -432,6 +439,7 @@ void publish_frame_world(const ros::Publisher & pubLaserCloudFullRes)
|
|||
{
|
||||
RGBpointBodyToWorld(&laserCloudFullRes->points[i], \
|
||||
&laserCloudWorld->points[i]);
|
||||
cout<<laserCloudWorld->points[i].intensity<<endl;
|
||||
}
|
||||
|
||||
// *pcl_wait_pub += *laserCloudWorld;
|
||||
|
|
Loading…
Reference in New Issue