solve some bugs and increase the precission

main
buaaxw@gmail.com 2020-11-12 14:52:34 +08:00
parent 1cc9cfe6e1
commit 47e9f27b14
5 changed files with 358 additions and 447 deletions

View File

@ -20,18 +20,18 @@
<param name="edgeb" type="double" value="0.1"/>
<param name="smallp_intersect" type="double" value="172.5"/>
<param name="smallp_ratio" type="double" value="1.2"/>
<param name="point_filter_num" type="int" value="5"/>
<param name="point_filter_num" type="int" value="4"/>
<node pkg="fast_lio" type="loam_feat_extract" name="feature_extract" output="screen"/>
<node pkg="fast_lio" type="loam_laserMapping" name="laserMapping" output="screen">
<param name="map_file_path" type="string" value=" " />
<param name="max_iteration" type="int" value="2" />
<param name="dense_map_enable" type="bool" value="true" />
<param name="fov_degree" type="double" value="80" />
<param name="fov_degree" type="double" value="75" />
<param name="filter_size_corner" type="double" value="0.3" />
<param name="filter_size_surf" type="double" value="0.2" />
<param name="filter_size_map" type="double" value="0.2" />
<param name="cube_side_length" type="double" value="15" />
<param name="cube_side_length" type="double" value="10" />
</node>
<group if="$(arg rviz)">

View File

@ -217,8 +217,8 @@ Visualization Manager:
- Alpha: 0.20000000298023224
Autocompute Intensity Bounds: true
Autocompute Value Bounds:
Max Value: -1.7674484252929688
Min Value: -8.243647575378418
Max Value: 0.32742905616760254
Min Value: -2.179872751235962
Value: true
Axis: Z
Channel Name: intensity
@ -664,18 +664,18 @@ Visualization Manager:
Swap Stereo Eyes: false
Value: false
Focal Point:
X: 6.608828544616699
Y: 3.081573247909546
Z: -3.704350709915161
X: 6.49392557144165
Y: -0.4694555699825287
Z: -1.3836920261383057
Focal Shape Fixed Size: true
Focal Shape Size: 0.05000000074505806
Invert Z Axis: false
Name: Current View
Near Clip Distance: 0.009999999776482582
Pitch: -0.17020323872566223
Pitch: 0.3497962951660156
Target Frame: <Fixed Frame>
Value: Orbit (rviz)
Yaw: 3.0474979877471924
Yaw: 5.425689220428467
Saved: ~
Window Geometry:
Displays:

View File

@ -26,7 +26,7 @@
/// *************Preconfiguration
#define MAX_INI_COUNT (50)
#define MAX_INI_COUNT (200)
const bool time_list(PointType &x, PointType &y) {return (x.curvature < y.curvature);};
@ -216,7 +216,7 @@ void ImuProcess::UndistortPcl(const MeasureGroup &meas, StatesGroup &state_inout
#ifdef DEBUG_PRINT
// fout<<head->header.stamp.toSec()<<" "<<angvel_avr.transpose()<<" "<<acc_avr.transpose()<<std::endl;
#endif
#endif
dt = tail->header.stamp.toSec() - head->header.stamp.toSec();
/* covariance propagation */
@ -224,7 +224,7 @@ void ImuProcess::UndistortPcl(const MeasureGroup &meas, StatesGroup &state_inout
Eigen::Matrix3d Exp_f = Exp(angvel_avr, dt);
acc_avr_skew<<SKEW_SYM_MATRX(angvel_avr);
F_x.block<3,3>(0,0) = - Exp_f;
F_x.block<3,3>(0,0) = Exp(angvel_avr, - dt);
F_x.block<3,3>(0,9) = - Eye3d * dt;
// F_x.block<3,3>(3,0) = R_imu * off_vel_skew * dt;
F_x.block<3,3>(3,6) = Eye3d * dt;
@ -290,7 +290,6 @@ void ImuProcess::UndistortPcl(const MeasureGroup &meas, StatesGroup &state_inout
pos_imu<<VEC_FROM_ARRAY(head->pos);
angvel_avr<<VEC_FROM_ARRAY(head->gyr);
int i = 0;
for(; it_pcl->curvature / double(1000) > head->offset_time; it_pcl --)
{
dt = it_pcl->curvature / double(1000) - head->offset_time;

View File

@ -3,6 +3,8 @@
#include <sensor_msgs/PointCloud2.h>
#include <livox_ros_driver/CustomMsg.h>
// Feature will be updated in next version
typedef pcl::PointXYZINormal PointType;
using namespace std;
ros::Publisher pub_full, pub_surf, pub_corn;
@ -15,12 +17,11 @@ enum E_jump{Nr_nor, Nr_zero, Nr_180, Nr_inf, Nr_blind};
struct orgtype
{
double range; // sqrt(x*x+y*y)
double dista; // 该点与后一个点的距离平方
double angle[2]; // 前(后)一个点、该点、原点所成角度
double intersect; // 前后点与该点的夹角
E_jump edj[2]; // 每个点前后点的关系
// Surround nor_dir;
double range;
double dista;
double angle[2];
double intersect;
E_jump edj[2];
Feature ftype;
orgtype()
{
@ -32,7 +33,6 @@ struct orgtype
}
};
// const int hor_line = 6;
const double rad2deg = 180*M_1_PI;
int lidar_type;
@ -63,25 +63,6 @@ int main(int argc, char **argv)
ros::init(argc, argv, "feature_extract");
ros::NodeHandle n;
// lidar_type = MID;
// blind = 0.5;
// inf_bound = 10;
// // N_SCANS = 1;
// group_size = 8;
// disA = 0.01; disB = 0.1;
// p2l_ratio = 400;
// limit_maxmid = 9;
// limit_midmin = 16;
// // limit_maxmin;
// jump_up_limit = cos(175.0/180*M_PI);
// jump_down_limit = cos(5.0/180*M_PI);
// cos160 = cos(160.0/180*M_PI);
// edgea = 3; // 2
// edgeb = 0.05; // 0.1
// smallp_intersect = cos(170.0/180*M_PI);
// smallp_ratio = 1.3;
// point_filter_num = 4;
n.param<int>("lidar_type", lidar_type, 0);
n.param<double>("blind", blind, 0.5);
n.param<double>("inf_bound", inf_bound, 10);
@ -107,75 +88,18 @@ int main(int argc, char **argv)
cos160 = cos(cos160/180*M_PI);
smallp_intersect = cos(smallp_intersect/180*M_PI);
// lidar_type = HORIZON;
// blind = 0.5;
// inf_bound = 10;
// N_SCANS = 6;
// group_size = 8;
// disA = 0.01; disB = 0.1;
// p2l_ratio = 225;
// limit_maxmid = 6.25;
// limit_midmin = 6.25;
// // limit_maxmin;
// jump_up_limit = cos(170.0/180*M_PI);
// jump_down_limit = cos(8.0/180*M_PI);
// cos160 = cos(160.0/180*M_PI);
// edgea = 2;
// edgeb = 0.1;
// smallp_intersect = cos(170.0/180*M_PI);
// smallp_ratio = 1.4;
// lidar_type = VELO16;
// blind = 0.5;
// inf_bound = 10;
// N_SCANS = 16;
// group_size = 9;
// disA = 0.015; disB = 0.3;
// p2l_ratio = 400;
// // limit_maxmid = 9;
// // limit_midmin = 16;
// limit_maxmin = 3.24;
// jump_up_limit = cos(170.0/180*M_PI);
// jump_down_limit = cos(8.0/180*M_PI);
// cos160 = cos(160.0/180*M_PI);
// edgea = 2; // 2
// edgeb = 0.1; // 0.1
// smallp_intersect = cos(170.0/180*M_PI);
// smallp_ratio = 1.4;
// lidar_type = OUST64; // lidar的种类
// blind = 0.5; // lidar的盲区非平方
// inf_bound = 10; // 无穷远点最近点的距离限制(非平方)
// N_SCANS = 64; // 6, 16, 64
// group_size = 9; // 7->8 9
// disA = 0.015; // 0.015 // Ax+B
// disB = 0.3; // 0.3
// p2l_ratio = 196; // 225 196
// // limit_maxmid = 9; // 6.25
// // limit_midmin = 16; // 6.25
// limit_maxmin = 6.25; // 6.25
// jump_up_limit = cos(170.0/180*M_PI);
// jump_down_limit = cos(8.0/180*M_PI);
// cos160 = cos(160.0/180*M_PI);
// edgea = 2.5; // 2
// edgeb = 0.2; // 0.1
// smallp_intersect = cos(170.0/180*M_PI);
// smallp_ratio = 1.4;
ros::Subscriber sub_points;
switch(lidar_type)
{
case MID:
printf("MID40-70\n");
printf("MID40\n");
sub_points = n.subscribe("/livox/lidar", 1000, mid_handler);
// sub_points = n.subscribe("/livox/lidar_1LVDG1S006J5GZ3", 1000, mid_handler);
break;
case HORIZON:
printf("HORIZON_MID70pro\n");
printf("HORIZON\n");
sub_points = n.subscribe("/livox/lidar", 1000, horizon_handler);
break;
@ -195,9 +119,9 @@ int main(int argc, char **argv)
break;
}
pub_full = n.advertise<sensor_msgs::PointCloud2>("/livox_cloud", 20);
pub_surf = n.advertise<sensor_msgs::PointCloud2>("/laser_cloud_flat", 20);
pub_corn = n.advertise<sensor_msgs::PointCloud2>("/laser_cloud_sharp", 20);
pub_full = n.advertise<sensor_msgs::PointCloud2>("/laser_cloud", 100);
pub_surf = n.advertise<sensor_msgs::PointCloud2>("/laser_cloud_flat", 100);
pub_corn = n.advertise<sensor_msgs::PointCloud2>("/laser_cloud_sharp", 100);
ros::spin();
return 0;
@ -218,7 +142,6 @@ void mid_handler(const sensor_msgs::PointCloud2::ConstPtr &msg)
for(uint i=0; i<plsize; i++)
{
// types[i].range = sqrt(pl[i].x*pl[i].x + pl[i].y*pl[i].y);
types[i].range = pl[i].x;
vx = pl[i].x - pl[i+1].x;
vy = pl[i].y - pl[i+1].y;
@ -231,17 +154,9 @@ void mid_handler(const sensor_msgs::PointCloud2::ConstPtr &msg)
give_feature(pl, types, pl_corn, pl_surf);
ros::Time ct(ros::Time::now());
pub_func(pl, pub_full, ct);
pub_func(pl_surf, pub_surf, ct);
pub_func(pl_corn, pub_corn, ct);
// printf("%u %u %u\n", pl.size(), pl_surf.size(), pl_corn.size());
// int a; cin >> a;
// if(a == 0)
// {
// exit(0);
// }
pub_func(pl, pub_full, msg->header.stamp);
pub_func(pl_surf, pub_surf, msg->header.stamp);
pub_func(pl_corn, pub_corn, msg->header.stamp);
}
void horizon_handler(const livox_ros_driver::CustomMsg::ConstPtr &msg)
@ -296,13 +211,110 @@ void horizon_handler(const livox_ros_driver::CustomMsg::ConstPtr &msg)
ros::Time ct;
ct.fromNSec(msg->timebase);
pub_func(pl_full, pub_full, ct);
pub_func(pl_surf, pub_surf, ct);
pub_func(pl_corn, pub_corn, ct);
pub_func(pl_full, pub_full, msg->header.stamp);
pub_func(pl_surf, pub_surf, msg->header.stamp);
pub_func(pl_corn, pub_corn, msg->header.stamp);
std::cout<<"[~~~~~~~~~~~~ Feature Extract ]: time: "<< omp_get_wtime() - t1<<" "<<msg->header.stamp.toSec()<<std::endl;
}
int orders[16] = {0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15};
void velo16_handler(const sensor_msgs::PointCloud2::ConstPtr &msg)
{
pcl::PointCloud<PointType> pl_orig;
pcl::fromROSMsg(*msg, pl_orig);
uint plsize = pl_orig.size();
vector<pcl::PointCloud<PointType>> pl_buff(N_SCANS);
vector<vector<orgtype>> typess(N_SCANS);
pcl::PointCloud<PointType> pl_corn, pl_surf, pl_full;
int scanID;
int last_stat = -1;
int idx = 0;
for(int i=0; i<N_SCANS; i++)
{
pl_buff[i].resize(plsize);
typess[i].resize(plsize);
}
for(uint i=0; i<plsize; i++)
{
PointType &ap = pl_orig[i];
double leng = sqrt(ap.x*ap.x + ap.y*ap.y);
if(leng < blind)
{
continue;
}
double ang = atan(ap.z / leng)*rad2deg;
scanID = int((ang + 15) / 2 + 0.5);
if(scanID>=N_SCANS || scanID<0)
{
continue;
}
if(orders[scanID] <= last_stat)
{
idx++;
}
pl_buff[scanID][idx].x = ap.x;
pl_buff[scanID][idx].y = ap.y;
pl_buff[scanID][idx].z = ap.z;
pl_buff[scanID][idx].intensity = ap.intensity;
typess[scanID][idx].range = leng;
last_stat = orders[scanID];
}
// for(int i=0; i<N_SCANS; i++)
// {
// pl_full += pl_buff[i];
// pub_func(pl_buff[i], pub_full, msg->header.stamp);
// }
// for(int i=0; i<10; i++)
// {
// printf("%f %f %f\n", pl_buff[0][i].x, pl_buff[0][i].y, pl_buff[0][i].z);
// }
// cout << endl;
idx++;
for(int j=0; j<N_SCANS; j++)
{
pcl::PointCloud<PointType> &pl = pl_buff[j];
vector<orgtype> &types = typess[j];
pl.erase(pl.begin()+idx, pl.end());
types.erase(types.begin()+idx, types.end());
plsize = idx - 1;
for(uint i=0; i<plsize; i++)
{
// types[i].range = sqrt(pl[i].x*pl[i].x + pl[i].y*pl[i].y);
vx = pl[i].x - pl[i+1].x;
vy = pl[i].y - pl[i+1].y;
vz = pl[i].z - pl[i+1].z;
types[i].dista = vx*vx + vy*vy + vz*vz;
}
types[plsize].range = sqrt(pl[plsize].x*pl[plsize].x + pl[plsize].y*pl[plsize].y);
give_feature(pl, types, pl_corn, pl_surf);
}
// printf("%zu %zu\n", pl_surf.size(), pl_corn.size());
pub_func(pl_orig, pub_full, msg->header.stamp);
pub_func(pl_surf, pub_surf, msg->header.stamp);
pub_func(pl_corn, pub_corn, msg->header.stamp);
}
void velo16_handler1(const sensor_msgs::PointCloud2::ConstPtr &msg)
{
pcl::PointCloud<PointType> pl_orig;
pcl::fromROSMsg(*msg, pl_orig);
@ -354,6 +366,41 @@ void velo16_handler(const sensor_msgs::PointCloud2::ConstPtr &msg)
stat = 0;
}
}
// idx = 0;
// int last_stat = -1;
// for(uint i=0; i<plsize; i++)
// {
// PointType &ap = pl_orig[i];
// // pl_full.push_back(ap);
// double leng = sqrt(ap.x*ap.x + ap.y*ap.y);
// if(leng < blind)
// {
// continue;
// }
// double ang = atan(ap.z / leng)*rad2deg;
// scanID = int((ang + 15) / 2 + 0.5);
// if(scanID>=N_SCANS || scanID<0)
// {
// continue;
// }
// if(orders[scanID] <= last_stat)
// {
// idx++;
// }
// pl_buff[scanID][idx].x = ap.x;
// pl_buff[scanID][idx].y = ap.y;
// pl_buff[scanID][idx].z = ap.z;
// pl_buff[scanID][idx].intensity = ap.intensity;
// last_stat = orders[scanID];
// }
idx++;
@ -374,13 +421,13 @@ void velo16_handler(const sensor_msgs::PointCloud2::ConstPtr &msg)
}
types[plsize].range = sqrt(pl[plsize].x*pl[plsize].x + pl[plsize].y*pl[plsize].y);
give_feature(pl, types, pl_corn, pl_surf);
}
ros::Time ct(ros::Time::now());
pub_func(pl_full, pub_full, ct);
pub_func(pl_surf, pub_surf, ct);
pub_func(pl_corn, pub_corn, ct);
pub_func(pl_full, pub_full, msg->header.stamp);
pub_func(pl_surf, pub_surf, msg->header.stamp);
pub_func(pl_corn, pub_corn, msg->header.stamp);
}
void oust64_handler(const sensor_msgs::PointCloud2::ConstPtr &msg)
@ -398,7 +445,6 @@ void oust64_handler(const sensor_msgs::PointCloud2::ConstPtr &msg)
for(int i=0; i<N_SCANS; i++)
{
pl_buff[i].reserve(plsize);
// typess[i].reserve(plsize);
}
for(uint i=0; i<plsize; i+=N_SCANS)
@ -427,10 +473,9 @@ void oust64_handler(const sensor_msgs::PointCloud2::ConstPtr &msg)
give_feature(pl, types, pl_corn, pl_surf);
}
ros::Time ct(ros::Time::now());
pub_func(pl_orig, pub_full, ct);
pub_func(pl_surf, pub_surf, ct);
pub_func(pl_corn, pub_corn, ct);
pub_func(pl_orig, pub_full, msg->header.stamp);
pub_func(pl_surf, pub_surf, msg->header.stamp);
pub_func(pl_corn, pub_corn, msg->header.stamp);
}
@ -444,12 +489,13 @@ void give_feature(pcl::PointCloud<PointType> &pl, vector<orgtype> &types, pcl::P
return;
}
uint head = 0;
while(types[head].range < blind)
{
head++;
}
// 平面点检测
// Surf
plsize2 = plsize - group_size;
Eigen::Vector3d curr_direct(Eigen::Vector3d::Zero());
@ -457,7 +503,6 @@ void give_feature(pcl::PointCloud<PointType> &pl, vector<orgtype> &types, pcl::P
uint i_nex, i2;
uint last_i = 0; uint last_i_nex = 0;
// 0:上次状态无用 1:上次为平面组
int last_state = 0;
int plane_type;
@ -511,12 +556,12 @@ void give_feature(pcl::PointCloud<PointType> &pl, vector<orgtype> &types, pcl::P
{
if(last_state == 1)
{
uint i_nex_tem; // 临时变量
uint i_nex_tem;
uint j;
for(j=last_i+1; j<=last_i_nex; j++)
{
uint i_nex_tem2 = i_nex_tem;
Eigen::Vector3d curr_direct2; // curr_direct临时变量
Eigen::Vector3d curr_direct2;
uint ttem = plane_judge(pl, types, j, i_nex_tem, curr_direct2);
@ -561,100 +606,100 @@ void give_feature(pcl::PointCloud<PointType> &pl, vector<orgtype> &types, pcl::P
}
plsize2 = plsize - 3;
// for(uint i=head+3; i<plsize2; i++)
// {
// if(types[i].range<blind || types[i].ftype>=Real_Plane)
// {
// continue;
// }
for(uint i=head+3; i<plsize2; i++)
{
if(types[i].range<blind || types[i].ftype>=Real_Plane)
{
continue;
}
// if(types[i-1].dista<1e-16 || types[i].dista<1e-16)
// {
// continue;
// }
if(types[i-1].dista<1e-16 || types[i].dista<1e-16)
{
continue;
}
// Eigen::Vector3d vec_a(pl[i].x, pl[i].y, pl[i].z);
// Eigen::Vector3d vecs[2];
Eigen::Vector3d vec_a(pl[i].x, pl[i].y, pl[i].z);
Eigen::Vector3d vecs[2];
// for(int j=0; j<2; j++)
// {
// int m = -1;
// if(j == 1)
// {
// m = 1;
// }
for(int j=0; j<2; j++)
{
int m = -1;
if(j == 1)
{
m = 1;
}
// if(types[i+m].range < blind)
// {
// if(types[i].range > inf_bound)
// {
// types[i].edj[j] = Nr_inf;
// }
// else
// {
// types[i].edj[j] = Nr_blind;
// }
// continue;
// }
if(types[i+m].range < blind)
{
if(types[i].range > inf_bound)
{
types[i].edj[j] = Nr_inf;
}
else
{
types[i].edj[j] = Nr_blind;
}
continue;
}
// vecs[j] = Eigen::Vector3d(pl[i+m].x, pl[i+m].y, pl[i+m].z);
// vecs[j] = vecs[j] - vec_a;
vecs[j] = Eigen::Vector3d(pl[i+m].x, pl[i+m].y, pl[i+m].z);
vecs[j] = vecs[j] - vec_a;
// types[i].angle[j] = vec_a.dot(vecs[j]) / vec_a.norm() / vecs[j].norm();
// if(types[i].angle[j] < jump_up_limit)
// {
// types[i].edj[j] = Nr_180;
// }
// else if(types[i].angle[j] > jump_down_limit)
// {
// types[i].edj[j] = Nr_zero;
// }
// }
types[i].angle[j] = vec_a.dot(vecs[j]) / vec_a.norm() / vecs[j].norm();
if(types[i].angle[j] < jump_up_limit)
{
types[i].edj[j] = Nr_180;
}
else if(types[i].angle[j] > jump_down_limit)
{
types[i].edj[j] = Nr_zero;
}
}
// types[i].intersect = vecs[Prev].dot(vecs[Next]) / vecs[Prev].norm() / vecs[Next].norm();
// if(types[i].edj[Prev]==Nr_nor && types[i].edj[Next]==Nr_zero && types[i].dista>0.0225 && types[i].dista>4*types[i-1].dista)
// {
// if(types[i].intersect > cos160)
// {
// if(edge_jump_judge(pl, types, i, Prev))
// {
// types[i].ftype = Edge_Jump;
// }
// }
// }
// else if(types[i].edj[Prev]==Nr_zero && types[i].edj[Next]== Nr_nor && types[i-1].dista>0.0225 && types[i-1].dista>4*types[i].dista)
// {
// if(types[i].intersect > cos160)
// {
// if(edge_jump_judge(pl, types, i, Next))
// {
// types[i].ftype = Edge_Jump;
// }
// }
// }
// else if(types[i].edj[Prev]==Nr_nor && types[i].edj[Next]==Nr_inf)
// {
// if(edge_jump_judge(pl, types, i, Prev))
// {
// types[i].ftype = Edge_Jump;
// }
// }
// else if(types[i].edj[Prev]==Nr_inf && types[i].edj[Next]==Nr_nor)
// {
// if(edge_jump_judge(pl, types, i, Next))
// {
// types[i].ftype = Edge_Jump;
// }
types[i].intersect = vecs[Prev].dot(vecs[Next]) / vecs[Prev].norm() / vecs[Next].norm();
if(types[i].edj[Prev]==Nr_nor && types[i].edj[Next]==Nr_zero && types[i].dista>0.0225 && types[i].dista>4*types[i-1].dista)
{
if(types[i].intersect > cos160)
{
if(edge_jump_judge(pl, types, i, Prev))
{
types[i].ftype = Edge_Jump;
}
}
}
else if(types[i].edj[Prev]==Nr_zero && types[i].edj[Next]== Nr_nor && types[i-1].dista>0.0225 && types[i-1].dista>4*types[i].dista)
{
if(types[i].intersect > cos160)
{
if(edge_jump_judge(pl, types, i, Next))
{
types[i].ftype = Edge_Jump;
}
}
}
else if(types[i].edj[Prev]==Nr_nor && types[i].edj[Next]==Nr_inf)
{
if(edge_jump_judge(pl, types, i, Prev))
{
types[i].ftype = Edge_Jump;
}
}
else if(types[i].edj[Prev]==Nr_inf && types[i].edj[Next]==Nr_nor)
{
if(edge_jump_judge(pl, types, i, Next))
{
types[i].ftype = Edge_Jump;
}
// }
// else if(types[i].edj[Prev]>Nr_nor && types[i].edj[Next]>Nr_nor)
// {
// if(types[i].ftype == Nor)
// {
// types[i].ftype = Wire;
// }
// }
// }
}
else if(types[i].edj[Prev]>Nr_nor && types[i].edj[Next]>Nr_nor)
{
if(types[i].ftype == Nor)
{
types[i].ftype = Wire;
}
}
}
plsize2 = plsize-1;
double ratio;
@ -696,81 +741,84 @@ void give_feature(pcl::PointCloud<PointType> &pl, vector<orgtype> &types, pcl::P
}
}
int last_surface = 0;
for(uint i=0; i<plsize; i++)
{
if(types[i].ftype==Poss_Plane || types[i].ftype==Real_Plane)
{
if(last_surface == 0)
{
pl_surf.push_back(pl[i]);
last_surface = 1;
}
else
{
last_surface = 0;
}
}
else if(types[i].ftype==Edge_Jump || types[i].ftype==Edge_Plane)
{
pl_corn.push_back(pl[i]);
}
}
// int last_surface = -1;
// for(uint j=head; j<plsize; j++)
// int last_surface = 0;
// for(uint i=0; i<plsize; i++)
// {
// if(types[j].ftype==Poss_Plane || types[j].ftype==Real_Plane)
// if(types[i].ftype==Poss_Plane || types[i].ftype==Real_Plane)
// {
// if(last_surface == -1)
// if(last_surface == 0)
// {
// last_surface = j;
// pl_surf.push_back(pl[i]);
// last_surface = 1;
// }
// else if(j == (last_surface+point_filter_num-1))
// else
// {
// PointType ap;
// for(uint k=last_surface; k<=j; k++)
// {
// ap.x += pl[k].x;
// ap.y += pl[k].y;
// ap.z += pl[k].z;
// }
// ap.x /= point_filter_num;
// ap.y /= point_filter_num;
// ap.z /= point_filter_num;
// pl_surf.push_back(ap);
// // printf("%d-%d: %lf %lf %lf\n", last_surface, j, ap.x, ap.y, ap.z);
// last_surface = -1;
// last_surface = 0;
// }
// }
// else
// else if(types[i].ftype==Edge_Jump || types[i].ftype==Edge_Plane)
// {
// if(types[j].ftype==Edge_Jump || types[j].ftype==Edge_Plane)
// {
// pl_corn.push_back(pl[j]);
// }
// if(last_surface != -1)
// {
// PointType ap;
// for(uint k=last_surface; k<j; k++)
// {
// ap.x += pl[k].x;
// ap.y += pl[k].y;
// ap.z += pl[k].z;
// }
// ap.x /= (j-last_surface);
// ap.y /= (j-last_surface);
// ap.z /= (j-last_surface);
// pl_surf.push_back(ap);
// // printf("%d-%d: %lf %lf %lf\n", last_surface, j-1, ap.x, ap.y, ap.z);
// }
// last_surface = -1;
// pl_corn.push_back(pl[i]);
// }
// }
int last_surface = -1;
for(uint j=head; j<plsize; j++)
{
if(types[j].ftype==Poss_Plane || types[j].ftype==Real_Plane)
{
if(last_surface == -1)
{
last_surface = j;
}
if(j == uint(last_surface+point_filter_num-1))
{
PointType ap;
for(uint k=last_surface; k<=j; k++)
{
ap.x += pl[k].x;
ap.y += pl[k].y;
ap.z += pl[k].z;
ap.curvature += pl[k].curvature;
}
ap.x /= point_filter_num;
ap.y /= point_filter_num;
ap.z /= point_filter_num;
ap.curvature /= point_filter_num;
pl_surf.push_back(ap);
// printf("%d-%d: %lf %lf %lf\n", last_surface, j, ap.x, ap.y, ap.z);
last_surface = -1;
}
}
else
{
if(types[j].ftype==Edge_Jump || types[j].ftype==Edge_Plane)
{
pl_corn.push_back(pl[j]);
}
if(last_surface != -1)
{
PointType ap;
for(uint k=last_surface; k<j; k++)
{
ap.x += pl[k].x;
ap.y += pl[k].y;
ap.z += pl[k].z;
ap.curvature += pl[k].curvature;
}
ap.x /= (j-last_surface);
ap.y /= (j-last_surface);
ap.z /= (j-last_surface);
ap.curvature /= (j-last_surface);
pl_surf.push_back(ap);
}
last_surface = -1;
}
}
}
@ -936,153 +984,4 @@ bool edge_jump_judge(const pcl::PointCloud<PointType> &pl, vector<orgtype> &type
}
int plane_judge1(const pcl::PointCloud<PointType> &pl, vector<orgtype> &types, uint i, uint &i_nex, Eigen::Vector3d &curr_direct)
{
double group_dis = 0.01*pl[i].x + 0.1;
group_dis = group_dis*group_dis;
double two_dis;
vector<double> disarr;
disarr.reserve(128);
for(i_nex=i; i_nex<i+group_size; i_nex++)
{
if(pl[i_nex].x < blind)
{
curr_direct = Eigen::Vector3d::Zero();
return 2;
}
disarr.push_back(types[i_nex].dista);
}
for(;;)
{
if(pl[i_nex].x < blind)
{
curr_direct = Eigen::Vector3d::Zero();
return 2;
}
vx = pl[i_nex].x - pl[i].x;
vy = pl[i_nex].y - pl[i].y;
vz = pl[i_nex].z - pl[i].z;
two_dis = vx*vx + vy*vy + vz*vz;
if(two_dis >= group_dis)
{
break;
}
disarr.push_back(types[i_nex].dista);
i_nex++;
}
double leng_wid = 0;
double v1[3], v2[3];
for(uint j=i+1; j<i_nex; j++)
{
v1[0] = pl[j].x - pl[i].x;
v1[1] = pl[j].y - pl[i].y;
v1[2] = pl[j].z - pl[i].z;
v2[0] = v1[1]*vz - vy*v1[2];
v2[1] = v1[2]*vx - v1[0]*vz;
v2[2] = v1[0]*vy - vx*v1[1];
double lw = v2[0]*v2[0] + v2[1]*v2[1] + v2[2]*v2[2];
if(lw > leng_wid)
{
leng_wid = lw;
}
}
// if((two_dis*two_dis/leng_wid) <= 225)
if((two_dis*two_dis/leng_wid) <= 400)
{
curr_direct = Eigen::Vector3d::Zero();
return 0;
}
// 寻找中位数(不是准确的中位数,有点偏差)
for(uint32_t j=0; j<disarr.size()-1; j++)
{
for(uint32_t k=j+1; k<disarr.size(); k++)
{
if(disarr[j] < disarr[k])
{
double a = disarr[j];
disarr[j] = disarr[k];
disarr[k] = a;
}
}
}
if(disarr[disarr.size()-2] < 1e-16)
{
// printf("!!!!two points are the same(at least two groups)\n");
// exit(0);
return 0;
}
double dismax_mid = disarr[0]/disarr[disarr.size()/2];
double dismid_min = disarr[disarr.size()/2]/disarr[disarr.size()-2];
if(dismax_mid>=9 || dismid_min>=16)
{
curr_direct = Eigen::Vector3d::Zero();
return 0;
}
curr_direct << vx, vy, vz;
curr_direct.normalize();
return 1;
}
bool edge_jump_judge1(const pcl::PointCloud<PointType> &pl, vector<orgtype> &types, uint i, Surround nor_dir)
{
// if(nor_dir == 0)
// {
// if(pl[i-1].x<blind)
// {
// return true;
// }
// else if(pl[i-2].x<blind)
// {
// return false;
// }
// }
// else if(nor_dir == 1)
// {
// if(pl[i+1].x<blind)
// {
// return true;
// }
// else if(pl[i+2].x<blind)
// {
// return false;
// }
// }
double d1 = types[i+nor_dir-1].dista;
double d2 = types[i+3*nor_dir-2].dista;
double d;
if(d1<d2)
{
d = d1;
d1 = d2;
d2 = d;
}
d1 = sqrt(d1);
d2 = sqrt(d2);
if(d1>0.05)
{
if(d1>3*d2 || (d1-d2)>0.05)
{
return false;
}
}
return true;
}

View File

@ -82,6 +82,7 @@ int laserCloudValidInd[250];
int laserCloudSurroundInd[250];
int laserCloudValidNum = 0;
int laserCloudSurroundNum = 0;
int laserCloudSelNum = 0;
const int laserCloudWidth = 42;
const int laserCloudHeight = 22;
@ -425,7 +426,6 @@ void lasermap_fov_segment()
if (isInLaserFOV)
{
laserCloudValidInd[laserCloudValidNum] = i + laserCloudWidth * j
+ laserCloudWidth * laserCloudHeight * k;
laserCloudValidNum ++;
@ -533,14 +533,12 @@ int main(int argc, char** argv)
ros::Subscriber sub_pcl = nh.subscribe("/laser_cloud_flat", 20000, feat_points_cbk);
ros::Subscriber sub_imu = nh.subscribe("/livox/imu", 20000, imu_cbk);
// ros::Subscriber subLaserCloudSurfLast = nh.subscribe<sensor_msgs::PointCloud2>
// ("/livox_undistort", 100, featsLastHandler);
ros::Publisher pubLaserCloudFullRes = nh.advertise<sensor_msgs::PointCloud2>
("/cloud_registered", 100);
ros::Publisher pubLaserCloudEffect = nh.advertise<sensor_msgs::PointCloud2>
("/cloud_effected", 100);
ros::Publisher pubLaserCloudMap = nh.advertise<sensor_msgs::PointCloud2>
("/Laser_map", 100);
// ros::Publisher pubSolvedPose6D = nh.advertise<fast_lio::States>
// ("/States_updated", 100);
ros::Publisher pubOdomAftMapped = nh.advertise<nav_msgs::Odometry>
("/aft_mapped_to_init", 10);
@ -711,7 +709,7 @@ int main(int argc, char** argv)
{
/** Find the closest surface/line in the map **/
kdtreeSurfFromMap->nearestKSearch(pointSel_tmpt, NUM_MATCH_POINTS, points_near, pointSearchSqDis_surf);
if (pointSearchSqDis_surf[NUM_MATCH_POINTS - 1] < 3.0)
if (pointSearchSqDis_surf[NUM_MATCH_POINTS - 1] < 3)
{
point_selected_surf[i] = true;
}
@ -773,13 +771,13 @@ int main(int argc, char** argv)
//if(fabs(pd2) > 0.1) continue;
float s = 1 - 0.9 * fabs(pd2) / sqrt(sqrt(pointSel_tmpt.x * pointSel_tmpt.x + pointSel_tmpt.y * pointSel_tmpt.y + pointSel_tmpt.z * pointSel_tmpt.z));
if (s > 0.1)
if (s > 0.92)
{
point_selected_surf[i] = true;
coeffSel_tmpt->points[i].x = s * pa;
coeffSel_tmpt->points[i].y = s * pb;
coeffSel_tmpt->points[i].z = s * pc;
coeffSel_tmpt->points[i].intensity = s * pd2;
coeffSel_tmpt->points[i].x = pa;
coeffSel_tmpt->points[i].y = pb;
coeffSel_tmpt->points[i].z = pc;
coeffSel_tmpt->points[i].intensity = pd2;
}
else
{
@ -794,7 +792,7 @@ int main(int argc, char** argv)
for (int i = 0; i < coeffSel_tmpt->points.size(); i++)
{
float error_abs = std::abs(coeffSel_tmpt->points[i].intensity);
if (point_selected_surf[i] && (error_abs < 0.5))
if (point_selected_surf[i])
{
laserCloudOri->push_back(feats_down->points[i]);
coeffSel->push_back(coeffSel_tmpt->points[i]);
@ -802,7 +800,7 @@ int main(int argc, char** argv)
}
}
int laserCloudSelNum = laserCloudOri->points.size();
laserCloudSelNum = laserCloudOri->points.size();
double ave_residual = total_residual / laserCloudSelNum;
// ave_res_last
@ -886,14 +884,13 @@ int main(int argc, char** argv)
euler_cur = RotMtoEuler(state.rot_end);
#ifdef DEBUG_PRINT
// std::cout<<"solution: "<<solution.transpose()<<std::endl;
std::cout<<"update: R"<<euler_cur.transpose()*57.3<<" p "<<state.pos_end.transpose()<<" v "<<state.vel_end.transpose()<<" bg"<<state.bias_g.transpose()<<" ba"<<state.bias_a.transpose()<<std::endl;
std::cout<<"dR & dT: "<<deltaR<<" "<<deltaT<<" res norm:"<<ave_residual<<std::endl;
#endif
/*** Rematch Judgement ***/
rematch_en = false;
if ((deltaR < 0.07 && deltaT < 0.015))
if ((deltaR < 0.01 && deltaT < 0.015) || ((rematch_num == 0) && (iterCount == (NUM_MAX_ITERATIONS - 2))))
{
rematch_en = true;
rematch_num ++;
@ -907,7 +904,6 @@ int main(int argc, char** argv)
/*** Covariance Update ***/
G.block<DIM_OF_STATES,6>(0,0) = K * Hsub;
state.cov = (I_STATE - G) * state.cov;
// std::cout<<"propagated cov: "<<state.cov.diagonal().transpose()<<std::endl;
}
solve_time += omp_get_wtime() - solve_start;
break;
@ -951,15 +947,15 @@ int main(int argc, char** argv)
}
t3 = omp_get_wtime();
/******* Publish current frame points in world coordinates: *******/
/******* Publish current frame points in world coordinates: *******/
laserCloudFullRes2->clear();
*laserCloudFullRes2 = dense_map_en ? (*feats_undistort) : (* feats_down);
// *laserCloudFullRes2 = dense_map_en ? (*laserCloudFullRes) : (* feats_down);
int laserCloudFullResNum = laserCloudFullRes2->points.size();
pcl::PointXYZRGB temp_point;
laserCloudFullResColor->clear();
{
for (int i = 0; i < laserCloudFullResNum; i++)
{
RGBpointBodyToWorld(&laserCloudFullRes2->points[i], &temp_point);
@ -971,6 +967,23 @@ int main(int argc, char** argv)
laserCloudFullRes3.header.stamp = ros::Time::now();//.fromSec(last_timestamp_lidar);
laserCloudFullRes3.header.frame_id = "/camera_init";
pubLaserCloudFullRes.publish(laserCloudFullRes3);
}
/******* Publish Effective points *******/
// {
// laserCloudFullResColor->clear();
// pcl::PointXYZRGB temp_point;
// for (int i = 0; i < laserCloudSelNum; i++)
// {
// RGBpointBodyToWorld(&laserCloudOri->points[i], &temp_point);
// laserCloudFullResColor->push_back(temp_point);
// }
// sensor_msgs::PointCloud2 laserCloudFullRes3;
// pcl::toROSMsg(*laserCloudFullResColor, laserCloudFullRes3);
// laserCloudFullRes3.header.stamp = ros::Time::now();//.fromSec(last_timestamp_lidar);
// laserCloudFullRes3.header.frame_id = "/camera_init";
// pubLaserCloudEffect.publish(laserCloudFullRes3);
// }
/******* Publish Maps: *******/
// sensor_msgs::PointCloud2 laserCloudMap;